- -

Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking

Show full item record

Martínez, C.; Verboekend, D.; Pérez-Ramírez, J.; Corma Canós, A. (2013). Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catalysis Science and Technology. 3(4):972-981. doi:10.1039/c2cy20688a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71585

Files in this item

Item Metadata

Title: Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking
Author: Martínez, Cristina Verboekend, Danny Pérez-Ramírez, Javier Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
Hierarchical USY zeolites obtained by scalable and affordable post-synthetic modifications (PSM) are stabilized by means of REO ion exchange and/or hydrothermal treatments, leading to FCC catalysts with improved hydrothermal ...[+]
Subjects: SOLID-STATE NMR , FCC CATALYSTS , GAS-OIL , HYDROTHERMAL STABILITY , FRAMEWORK ALUMINUM , DEALUMINATED HY , Y-ZEOLITES , UNIT-CELL , SELECTIVITY , ZSM-5
Copyrigths: Cerrado
Source:
Catalysis Science and Technology. (issn: 2044-4753 )
DOI: 10.1039/c2cy20688a
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c2cy20688a
Project ID:
info:eu-repo/grantAgreement/SNSF//200021-134572/CH/
Thanks:
The authors acknowledge financial support from the Spanish Government MINECO, Consolider Ingenio 2010 (project MUL-TICAT). The Swiss National Science Foundation (Project Number 200021-134572) is acknowledged.
Type: Artículo

References

Corma, A., & Wojciechowski, B. W. (1985). The Chemistry of Catalytic Cracking. Catalysis Reviews, 27(1), 29-150. doi:10.1080/01614948509342358

Dwyer, J., Millward, D., O’Malley, P. J., Araya, A., Corma, A., Fornes, V., & Martinez, A. (1990). Synthesis of ZSM-20. Comparison of properties with zeolite Y. Journal of the Chemical Society, Faraday Transactions, 86(6), 1001. doi:10.1039/ft9908601001

Haas, A., Harding, D. ., & Nee, J. R. . (1999). FCC catalysts containing the high-silica faujasites EMO and EMT for gas-oil cracking. Microporous and Mesoporous Materials, 28(2), 325-333. doi:10.1016/s1387-1811(98)00247-9 [+]
Corma, A., & Wojciechowski, B. W. (1985). The Chemistry of Catalytic Cracking. Catalysis Reviews, 27(1), 29-150. doi:10.1080/01614948509342358

Dwyer, J., Millward, D., O’Malley, P. J., Araya, A., Corma, A., Fornes, V., & Martinez, A. (1990). Synthesis of ZSM-20. Comparison of properties with zeolite Y. Journal of the Chemical Society, Faraday Transactions, 86(6), 1001. doi:10.1039/ft9908601001

Haas, A., Harding, D. ., & Nee, J. R. . (1999). FCC catalysts containing the high-silica faujasites EMO and EMT for gas-oil cracking. Microporous and Mesoporous Materials, 28(2), 325-333. doi:10.1016/s1387-1811(98)00247-9

Corma, A., Díaz-Cabañas, M. J., Martínez-Triguero, J., Rey, F., & Rius, J. (2002). A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 418(6897), 514-517. doi:10.1038/nature00924

Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238

ARRIBAS, J. (1987). Influence of framework aluminum gradients on the catalytic activity of Y zeolites: Cracking of gas-oil on Y zeolites dealuminated by different procedures. Journal of Catalysis, 108(1), 135-142. doi:10.1016/0021-9517(87)90160-6

Corma, A., Fornés, V., Martínez, A., & Orchillés, A. V. (1988). Parameters in Addition to the Unit Cell That Determine the Cracking Activity and Selectivity of Dealuminated HY Zeolites. Perspectives in Molecular Sieve Science, 542-554. doi:10.1021/bk-1988-0368.ch035

Camblor, M. A., Corma, A., Martínez, A., Mocholí, F. A., & Pariente, J. P. (1989). Catalytic cracking of gasoil. Applied Catalysis, 55(1), 65-74. doi:10.1016/s0166-9834(00)82317-9

Chen, N. Y., Mitchell, T. O., Olson, D. H., & Pelrine, B. P. (1977). Irreversible Deactivation of Zeolite Fluid Cracking Catalyst. 2. Hydrothermal Stability of Catalysts Containing NH4Y and Rare Earth Y. Industrial & Engineering Chemistry Product Research and Development, 16(3), 247-252. doi:10.1021/i360063a012

Sanchez-Castillo, M. A., Madon, R. J., & Dumesic, J. A. (2005). Role of Rare Earth Cations in Y Zeolite for Hydrocarbon Cracking†. The Journal of Physical Chemistry B, 109(6), 2164-2175. doi:10.1021/jp0489875

Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k

Egeblad, K., Christensen, C. H., Kustova, M., & Christensen, C. H. (2008). Templating Mesoporous Zeolites†. Chemistry of Materials, 20(3), 946-960. doi:10.1021/cm702224p

Serrano, D. P., Aguado, J., & Escola, J. M. (s. f.). Hierarchical zeolites: materials with improved accessibility and enhanced catalytic activity. Catalysis, 253-283. doi:10.1039/9781849732772-00253

Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., & Schwieger, W. (2011). Zeolitic Materials with Hierarchical Porous Structures. Advanced Materials, 23(22-23), 2602-2615. doi:10.1002/adma.201100462

Van Donk, S., Janssen, A. H., Bitter, J. H., & de Jong, K. P. (2003). Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catalysis Reviews, 45(2), 297-319. doi:10.1081/cr-120023908

Hartmann, M. (2004). Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport. Angewandte Chemie International Edition, 43(44), 5880-5882. doi:10.1002/anie.200460644

Schmidt, W. (2009). Solid Catalysts on the Nanoscale: Design of Complex Morphologies and Pore Structures. ChemCatChem, 1(1), 53-67. doi:10.1002/cctc.200900125

Chal, R., Gérardin, C., Bulut, M., & van Donk, S. (2010). Overview and Industrial Assessment of Synthesis Strategies towards Zeolites with Mesopores. ChemCatChem, 3(1), 67-81. doi:10.1002/cctc.201000158

Holm, M. S., Taarning, E., Egeblad, K., & Christensen, C. H. (2011). Catalysis with hierarchical zeolites. Catalysis Today, 168(1), 3-16. doi:10.1016/j.cattod.2011.01.007

Lei, Q., Zhao, T., Li, F., Zhang, L., & Wang, Y. (2006). Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications, (16), 1769. doi:10.1039/b600547k

García-Martínez, J., Johnson, M., Valla, J., Li, K., & Ying, J. Y. (2012). Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2(5), 987. doi:10.1039/c2cy00309k

Dessau, R. M., Valyocsik, E. W., & Goeke, N. H. (1992). Aluminum zoning in ZSM-5 as revealed by selective silica removal. Zeolites, 12(7), 776-779. doi:10.1016/0144-2449(92)90049-u

Doremieux-Morin, C., Ramsaran, A., Le Van Mao, R., Batamack, P., Heeribout, L., Semmer, V., … Fraissard, J. (1995). 1H broad-line and MAS NMR: application to the study of acid sites of desilicated zeolite ZSM-5. Catalysis Letters, 34(1-2), 139-149. doi:10.1007/bf00808330

Le Van Mao, R., Le, S. T., Ohayon, D., Caillibot, F., Gelebart, L., & Denes, G. (1997). Modification of the micropore characteristics of the desilicated ZSM-5 zeolite by thermal treatment. Zeolites, 19(4), 270-278. doi:10.1016/s0144-2449(97)00084-5

Čimek, A., Subotić, B., Šmit, I., Tonejc, A., Aiello, R., Crea, F., & Nastro, A. (1997). Dissolution of high-silica zeolites in alkaline solutions II. Dissolution of ‘activated’ silicalite-1 and ZSM-5 with different aluminum content. Microporous Materials, 8(3-4), 159-169. doi:10.1016/s0927-6513(96)00082-x

Ohayon, D., Le Van Mao, R., Ciaravino, D., Hazel, H., Cochennec, A., & Rolland, N. (2001). Methods for pore size engineering in ZSM-5 zeolite. Applied Catalysis A: General, 217(1-2), 241-251. doi:10.1016/s0926-860x(01)00611-1

Pérez-Ramírez, J., Mitchell, S., Verboekend, D., Milina, M., Michels, N.-L., Krumeich, F., … Erdmann, M. (2011). Expanding the Horizons of Hierarchical Zeolites: Beyond Laboratory Curiosity towards Industrial Realization. ChemCatChem, 3(11), 1731-1734. doi:10.1002/cctc.201100264

Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g

De Jong, K. P., Zečević, J., Friedrich, H., de Jongh, P. E., Bulut, M., van Donk, S., … Fajula, F. (2010). Zeolite Y Crystals with Trimodal Porosity as Ideal Hydrocracking Catalysts. Angewandte Chemie International Edition, 49(52), 10074-10078. doi:10.1002/anie.201004360

Verboekend, D., Vilé, G., & Pérez-Ramírez, J. (2011). Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies. Advanced Functional Materials, 22(5), 916-928. doi:10.1002/adfm.201102411

Al-Sabawi, M., Chen, J., & Ng, S. (2012). Fluid Catalytic Cracking of Biomass-Derived Oils and Their Blends with Petroleum Feedstocks: A Review. Energy & Fuels, 26(9), 5355-5372. doi:10.1021/ef3006417

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Corma, A., Martínez, C., & Sauvanaud, L. (2007). New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content. Catalysis Today, 127(1-4), 3-16. doi:10.1016/j.cattod.2007.03.056

Klinowski, J., Thomas, J. M., Fyfe, C. A., & Gobbi, G. C. (1982). Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolite catalysts. Nature, 296(5857), 533-536. doi:10.1038/296533a0

Fyfe, C. A., Bretherton, J. L., & Lam, L. Y. (2000). Detection of the ‘invisible aluminium’ and characterisation of the multiple aluminium environments in zeolite USY by high-field solid-state NMR. Chemical Communications, (17), 1575-1576. doi:10.1039/b003081n

Corma, A., Fornés, V., & Rey, F. (1990). Extraction of extra-framework aluminium in ultrastable Y zeolites by (NH4)2SiF6 treatments. Applied Catalysis, 59(1), 267-274. doi:10.1016/s0166-9834(00)82203-4

Corma, A., Fornés, V., Melo, F. V., & Herrero, J. (1987). Comparison of the information given by ammonia t.p.d. and pyridine adsorption—desorption on the acidity of dealuminated HY and LaHY zeolite cracking catalysts. Zeolites, 7(6), 559-563. doi:10.1016/0144-2449(87)90098-4

Gore, K. U., Abraham, A., Hegde, S. G., Kumar, R., Amoureux, J.-P., & Ganapathy, S. (2002). 29Si and27Al MAS/3Q-MAS NMR Studies of High Silica USY Zeolites. The Journal of Physical Chemistry B, 106(23), 6115-6120. doi:10.1021/jp0143241

PINE, L. (1990). Vanadium-catalyzed destruction of USY zeolites. Journal of Catalysis, 125(2), 514-524. doi:10.1016/0021-9517(90)90323-c

Hagiwara, K., Ebihara, T., Urasato, N., Ozawa, S., & Nakata, S. (2003). Effect of vanadium on USY zeolite destruction in the presence of sodium ions and steam—studies by solid-state NMR. Applied Catalysis A: General, 249(2), 213-228. doi:10.1016/s0926-860x(03)00289-8

Sandoval-Díaz, L.-E., Palomeque-Forero, L.-A., & Trujillo, C. A. (2011). Towards understanding sodium effect on USY zeolite. Applied Catalysis A: General, 393(1-2), 171-177. doi:10.1016/j.apcata.2010.11.038

Tangstad, E., Bendiksen, M., & Myrstad, T. (1997). Effect of sodium deposition of FCC catalysts deactivation. Applied Catalysis A: General, 150(1), 85-99. doi:10.1016/s0926-860x(96)00284-0

Corma, A., Fornes, V., Monton, J. B., & Orchilles, A. V. (1986). Structural and cracking properties of REHY zeolites. Activity, selectivity, and catalyst-decay optimization for n-heptane cracking. Industrial & Engineering Chemistry Product Research and Development, 25(2), 231-238. doi:10.1021/i300022a018

Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x

Otterstedt, J.-E., Zhu, Y.-M., & Sterte, J. (1988). Catalytic cracking of heavy oil over catalysts containing different types of zeolite Y in active and inactive matrices. Applied Catalysis, 38(1), 143-155. doi:10.1016/s0166-9834(00)80993-8

Al-Khattaf, S. (2003). The Influence of Alumina on the Performance of FCC Catalysts during Hydrotreated VGO Catalytic Cracking. Energy & Fuels, 17(1), 62-68. doi:10.1021/ef020066a

Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record