- -

Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of alpha-pinene oxide

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of alpha-pinene oxide

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Amarajothi, Dhakshina Moorthy es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Chevreau, Hubert es_ES
dc.contributor.author Horcajada Campos, Patricia es_ES
dc.contributor.author Devic, Thomas es_ES
dc.contributor.author Serre, Christian es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-10-11T06:55:11Z
dc.date.available 2016-10-11T06:55:11Z
dc.date.issued 2012
dc.identifier.issn 2044-4753
dc.identifier.uri http://hdl.handle.net/10251/71586
dc.description.abstract [EN] A series of Fe3+-containing porous metal-organic frameworks (MOFs), including the commercial iron trimesate Basolite F-300 or Fe(BTC) (BTC: 1,3,5-benzenetricarboxylate) and the synthetic iron terephthalate MIL-88B (Fe3O(BDC)(3)X, X = Cl, OH, BDC = 1,4-benzenedicarboxylate), iron naphthalenedicarboxylate MIL-88C (Fe3O(NDC)(3)X, X = Cl, OH, NDC = 1,6-naphthalenedicarboxylate), iron trimesate MIL-100 (Fe3O(BTC)(2)X, X = Cl, OH) and iron azobenzenetetracarboxylate soc-MOF(Fe) or MIL-127 (Fe6O2(Tazb)(3)X-2, X = Cl, OH, Tazb = 3,3',5,5'-azobenzenetetracarboxylate; MIL stands for Materials from Institut Lavoisier), have been tested for the rearrangement of alpha-pinene oxide to camphonelal and isopinocamphone in the absence of solvent. Conversions of about 10% with 50% selectivity towards camphonelal were obtained. This catalytic performance has been compared with that of the copper trimesate Basolite C-300 or HKUST-1 of formula Cu-3(BTC)(2) and the aluminium terephthalate Basolite A-100 or MIL-53(Al) of formula Al(OH)(BDC) as well as with some homogeneous (ZnCl2, Cu(NO3)(2), Al(NO3)(3)) and heterogeneous (Fe3+-exchanged Y-zeolite) Lewis acids. Fe(BTC) also exhibits catalytic activity for the rearrangement of other epoxides (styrene, cyclohexene and norbornene oxides) under solventless conditions. Some partial deactivation of the Fe(BTC) with a slight degradation of the structure has nevertheless been observed. es_ES
dc.description.sponsorship Financial support by the Spanish DGI (CTQ2009-11587, CTQ2010-18671 and CONSOLIDER MULTICAT) is gratefully acknowledged. Funding of European Commission through an integrated FP7 project MACADEMIA (FP7/2007-2013 Nr. 228862) is also acknowledged. Authors thank G. Maurin for kindly simulating accessible surface areas of the open form of flexible MIL-88 solids. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HETEROGENEOUS CATALYSIS es_ES
dc.subject EFFICIENT es_ES
dc.subject SORPTION es_ES
dc.subject MOFS es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of alpha-pinene oxide es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c2cy00376g
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11587/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Amarajothi, DM.; Alvaro Rodríguez, MM.; Chevreau, H.; Horcajada Campos, P.; Devic, T.; Serre, C.; García Gómez, H. (2012). Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of alpha-pinene oxide. Catalysis Science and Technology. 2(2):324-330. https://doi.org/10.1039/c2cy00376g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c2cy00376g es_ES
dc.description.upvformatpinicio 324 es_ES
dc.description.upvformatpfin 330 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 240406 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Corma, A., & García, H. (2003). Lewis Acids:  From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chemical Reviews, 103(11), 4307-4366. doi:10.1021/cr030680z es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 es_ES
dc.description.references Sartori, G., & Maggi, R. (2006). Use of Solid Catalysts in Friedel−Crafts Acylation Reactions†. Chemical Reviews, 106(3), 1077-1104. doi:10.1021/cr040695c es_ES
dc.description.references Maruoka, K., Nagahara, S., Ooi, T., & Yamamoto, H. (1989). An efficient, catalytic procedure for epoxide rearrangement. Tetrahedron Letters, 30(41), 5607-5610. doi:10.1016/s0040-4039(01)93811-0 es_ES
dc.description.references Kita, Y., Furukawa, A., Futamura, J., Ueda, K., Sawama, Y., Hamamoto, H., & Fujioka, H. (2001). Remarkable Effect of Aluminum Reagents on Rearrangements of Epoxy Acylates via Stable Cation Intermediates and Its Application to the Synthesis of (S)-(+)-Sporochnol A. The Journal of Organic Chemistry, 66(26), 8779-8786. doi:10.1021/jo0104328 es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g es_ES
dc.description.references Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal-Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon-Carbon Multiple Bonds with Hydrazine. Advanced Synthesis & Catalysis, 351(14-15), 2271-2276. doi:10.1002/adsc.200900362 es_ES
dc.description.references Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b es_ES
dc.description.references Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027 es_ES
dc.description.references Song, F., Wang, C., Falkowski, J. M., Ma, L., & Lin, W. (2010). Isoreticular Chiral Metal−Organic Frameworks for Asymmetric Alkene Epoxidation: Tuning Catalytic Activity by Controlling Framework Catenation and Varying Open Channel Sizes. Journal of the American Chemical Society, 132(43), 15390-15398. doi:10.1021/ja1069773 es_ES
dc.description.references Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201 es_ES
dc.description.references Savonnet, M., Aguado, S., Ravon, U., Bazer-Bachi, D., Lecocq, V., Bats, N., … Farrusseng, D. (2009). Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks. Green Chemistry, 11(11), 1729. doi:10.1039/b915291c es_ES
dc.description.references Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d es_ES
dc.description.references Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220 es_ES
dc.description.references Férey, G., Millange, F., Morcrette, M., Serre, C., Doublet, M.-L., Grenèche, J.-M., & Tarascon, J.-M. (2007). Mixed-Valence Li/Fe-Based Metal–Organic Frameworks with Both Reversible Redox and Sorption Properties. Angewandte Chemie International Edition, 46(18), 3259-3263. doi:10.1002/anie.200605163 es_ES
dc.description.references Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Advanced Synthesis & Catalysis, 352(4), 711-717. doi:10.1002/adsc.200900747 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664 es_ES
dc.description.references Serre, C., Mellot-Draznieks, C., Surble, S., Audebrand, N., Filinchuk, Y., & Ferey, G. (2007). Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks. Science, 315(5820), 1828-1831. doi:10.1126/science.1137975 es_ES
dc.description.references Liu, Y., Eubank, J. F., Cairns, A. J., Eckert, J., Kravtsov, V. C., Luebke, R., & Eddaoudi, M. (2007). Assembly of Metal–Organic Frameworks (MOFs) Based on Indium-Trimer Building Blocks: A Porous MOF with soc Topology and High Hydrogen Storage. Angewandte Chemie International Edition, 46(18), 3278-3283. doi:10.1002/anie.200604306 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c es_ES
dc.description.references Leclerc, H., Vimont, A., Lavalley, J.-C., Daturi, M., Wiersum, A. D., Llwellyn, P. L., … Serre, C. (2011). Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 13(24), 11748. doi:10.1039/c1cp20502a es_ES
dc.description.references Ravasio, N., Zaccheria, F., Gervasini, A., & Messi, C. (2008). A new, Fe based, heterogeneous Lewis acid: Selective isomerization of α-pinene oxide. Catalysis Communications, 9(6), 1125-1127. doi:10.1016/j.catcom.2007.10.019 es_ES
dc.description.references Ameerunisha, S., & Zacharias, P. S. (1995). Characterization of simple photoresponsive systems and their applications to metal ion transport. Journal of the Chemical Society, Perkin Transactions 2, (8), 1679. doi:10.1039/p29950001679 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem