Mena, A.; Ferrero De Loma-Osorio, JM.; Rodriguez Matas, JF. (2015). GPU accelerated solver for nonlinear reaction-diffusion systems. Application to the electrophysiology problem. Computer Physics Communications. 196:280-289. https://doi.org/10.1016/j.cpc.2015.06.018
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71588
Title:
|
GPU accelerated solver for nonlinear reaction-diffusion systems. Application to the electrophysiology problem
|
Author:
|
Mena, Andres
Ferrero De Loma-Osorio, José María
Rodriguez Matas, Jose Felix
|
UPV Unit:
|
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
|
Issued date:
|
|
Abstract:
|
Solving the electric activity of the heart possess a big challenge, not only because of the structural
complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. ...[+]
Solving the electric activity of the heart possess a big challenge, not only because of the structural
complexities inherent to the heart tissue, but also because of the complex electric behaviour of the cardiac cells. The multi-scale nature of the electrophysiology problem makes difficult its numerical solution, requiring temporal and spatial resolutions of 0.1 ms and 0.2 mm respectively for accurate simulations, leading to models with millions degrees of freedom that need to be solved for thousand time steps. Solution of this problem requires the use of algorithms with higher level of parallelism in multi-core platforms. In this regard the newer programmable graphic processing units (GPU) has become a valid alternative due to their tremendous computational horsepower. This paper presents results obtained with a novel electrophysiology simulation software entirely developed in Compute Unified Device Architecture (CUDA). The software implements fully explicit and semi-implicit solvers for the monodomain model, using operator splitting. Performance is compared with classical multi-core MPI based solvers operating on dedicated high-performance computer clusters. Results obtained with the GPU based solver show enormous potential for this technology with accelerations over 50× for three-dimensional problems.
[-]
|
Subjects:
|
GPU
,
Solver
,
Reaction-diffusion equations
,
Computational modelling
,
Cardiac electrophysiology
|
Copyrigths:
|
Cerrado |
Source:
|
Computer Physics Communications. (issn:
0010-4655
) (eissn:
1879-2944
)
|
DOI:
|
10.1016/j.cpc.2015.06.018
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.cpc.2015.06.018
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//TIN2012-37546-C03-03/ES/CORAZON HUMANO FISIOLOGICO VIRTUAL: DESARROLLO DE HERRAMIENTAS COMPUTACIONALES EFICIENTES PARA APLICACIONES DE ELECTROFISIOLOGIA Y DESARROLLO DE MODELO/
info:eu-repo/grantAgreement/MINECO//TIN2012-37546-C03-01/ES/CORAZON HUMANO COMPLETO FISIOLOGICO VIRTUAL: MEJORAS EN EL TRATAMIENTO DE ARRITMIAS CARDIACAS ORIENTADO A PACIENTE/
|
Thanks:
|
This project was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (grant numbers TIN2012-37546-C03-01 ...[+]
This project was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (grant numbers TIN2012-37546-C03-01 and TIN2012-37546-C03-03) and the European Commission (European Regional Development Funds - ERDF - FEDER). We also thanks Dr Gunnar Seemann at the Karlsruhe Institute of Technology for providing the tetrahedral model of the human atria.
[-]
|
Type:
|
Artículo
|