- -

Improving NNMFPACK with heterogeneous and efficient kernels for ß-divergence metrics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving NNMFPACK with heterogeneous and efficient kernels for ß-divergence metrics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz-Gracia, N. es_ES
dc.contributor.author Cocaña-Fernández, A. es_ES
dc.contributor.author Alonso-González, M: es_ES
dc.contributor.author Martínez Zaldívar, Francisco José es_ES
dc.contributor.author Cortina, Raquel es_ES
dc.contributor.author García Mollá, Víctor Manuel es_ES
dc.contributor.author Alonso, P. es_ES
dc.contributor.author Ranilla, J. es_ES
dc.contributor.author Vidal Maciá, Antonio Manuel es_ES
dc.date.accessioned 2016-10-11T07:42:53Z
dc.date.available 2016-10-11T07:42:53Z
dc.date.issued 2015-05
dc.identifier.issn 1573-0484
dc.identifier.uri http://hdl.handle.net/10251/71595
dc.description.abstract NnmfPack is a library for the nonnegative matrix factorization (NNMF) problem. Nowadays NNMF is an essential tool in many fields spanning machine learning, data analysis, image analysis or audio source separation, among others. NnmfPack is an efficient numerical library conceived for shared memory heterogeneous parallel systems, and it supports, from its conception, both conventional multi-core processors and many-core coprocessors. In this article, NnmfPack is extended to handle different metrics options ( ββ -divergence), and some other parallel algorithms have been added and tested. The performance of the new functionalities of NnmfPack is tested, and some precision results of the implementations are showed using an example borrowed from the image processing field. es_ES
dc.description.sponsorship This work has been partially supported by "Ministerio de Economia y Competitividad" from Spain, under the projects TEC2012-38142-C04-01 and TEC2012-38142-C04-04 and by ISIC/2012/006 and PROMETEO FASE II 2014/003 projects of Generalitat Valenciana. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject NNMF es_ES
dc.subject Parallel library es_ES
dc.subject GPU es_ES
dc.subject Intel MIC es_ES
dc.subject Multi-core es_ES
dc.subject Many-core es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Improving NNMFPACK with heterogeneous and efficient kernels for ß-divergence metrics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-014-1363-y
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-01/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: CONTROL ACTIVO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-04/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: COMPUTACION DISTRIBUIDA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F003/ES/Computación y comunicaciones de altas prestaciones y aplicaciones en ingeniería/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Díaz-Gracia, N.; Cocaña-Fernández, A.; Alonso-González, M.; Martínez Zaldívar, FJ.; Cortina, R.; García Mollá, VM.; Alonso, P.... (2015). Improving NNMFPACK with heterogeneous and efficient kernels for ß-divergence metrics. Journal of Supercomputing. 71(5):1846-1856. https://doi.org/10.1007/s11227-014-1363-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11227-014-1363-y es_ES
dc.description.upvformatpinicio 1846 es_ES
dc.description.upvformatpfin 1856 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 299400 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Battenberg E, Freed A, Wessel D (2010) Advances in the parallelization of music and audio applications. In: Proceedings of the International Computer Music Conference, New York es_ES
dc.description.references Wnag J, Zhong W, Zhang J (2006) NNMF-based factorization techniques for high-accuracy privacy protection on non-negative-valued datasets. In: Proceedings of the Sixth IEEE International Conference on Computing and Processing, Data Mining Workshops ICDM Workshops, pp 513–517 es_ES
dc.description.references Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Virtanen T, Ruiz-Reyes N (2012) Multiple instrument mixtures source separation evaluation using instrument-dependent NMF models. In: Proceedings of the 10th international conference on latent variable analysis and signal separation, March 12–15, Tel Aviv, Israel. LNCS, vol 7191. Springer, Berlin, pp 380–387 es_ES
dc.description.references Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval, July 28–Aug 1, Toronto, Canada, pp 267–273 es_ES
dc.description.references Berry MW, Browne M, Langville A, Pauca V, Plemmons R (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal 52:155–173 es_ES
dc.description.references Devajaran K (2008) Nonnegative matrix factorization: an analytical and interpretative tool in computational biology. PLoS Comput Biol 4(7):e1000029. doi: 10.1371/journal.pcbi.1000029 es_ES
dc.description.references Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization., Advances in neural information processing systemsMIT Press, Cambridge es_ES
dc.description.references Kim J, Park H (2008) Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J Matrix Anal Appl 30:713–730 es_ES
dc.description.references Guan N, Tao D, Luo Z, Yuan B (2012) NeNMF: An optimal gradient method for non-negative matrix factorization. IEEE Trans Signal Process 60(6):2882–2898 es_ES
dc.description.references Cichocki A, Phan AH (2009) Fast local algorithms for large scale nonnegative matrix and tensor factorizations. In: Proceedings of IEICE transactions on fundamentals of electronics communications and computer sciences, E92-A, pp 708–721 es_ES
dc.description.references Cichocki A, Zdunek R, Amari SI (2007) Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. In: Proceedings of the 7th international conference on independent component analysis and signal separation, September 9–12, London, UK. LNCS, vol 4666. Springer, Berlin, pp 169–176 es_ES
dc.description.references Alonso P, García VM, Martínez-Zaldívar FJ, Salazar A, Vergara L, Vidal AM (2014) Parallel approach to NNMF on multicore architecture. J Supercomput. 70(2):564–576 es_ES
dc.description.references Díaz-Gracia N, Cocaña-Fernández A, Alonso-González M, Martínez-Zaldívar FJ, Cortina R, García-Mollá VM, Alonso P, Ranilla J, Vidal AM (2014) NNMFPACK: a versatile approach to an NNMF parallel library. In: Proceedings of the 2014 international conference on computational and mathematical methods in science and engineering, Cádiz, 2014, pp 456–465 es_ES
dc.description.references Carabias-Orti JJ, Rodriguez-Serrano FJ, Vera-Candeas P, Cañadas-Quesada FJ, Ruiz-Reyes N (2013) Constrained non-negative sparse coding using learnt instrument templates for real time music transcription. Eng Appl AI 26(7):1671–1680 es_ES
dc.description.references Carabias-Orti JJ, Virtanen T, Vera-Candeas P, Ruiz-Reyes N, Cañadas-Quesada FJ (2011) Musical instrument sound multi-excitation model for non-negative spectrogram factorization. IEEE J Select Topics Signal Process 5(6):1144–1158 es_ES
dc.description.references Minami M, Eguchi S (2002) Robust blind source separation by beta-divergence. Neural Comput 14:1859–1886 es_ES
dc.description.references Févotte C, Bertin N, Durrieu J-L (2009) Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis. Neural Comput 21:793–830 es_ES
dc.description.references Golub GH, Van Loan CF (1996) Matrix Comput. Johns Hopkins University Press, Baltimore es_ES
dc.description.references http://pirserver.edv.uniovi.es es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem