- -

Multifunktionale, Defekt-manipulierte Metall-organische Gerüste mit Rutheniumzentren: Sorption und katalytische Eigenschaften

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Multifunktionale, Defekt-manipulierte Metall-organische Gerüste mit Rutheniumzentren: Sorption und katalytische Eigenschaften

Show full item record

Kozachuk, O.; Luz Minguez, I.; Llabrés I Xamena, FX.; Noei, H.; Kauer, M.; Bauke Albada, H.; Bloch, ED.... (2014). Multifunktionale, Defekt-manipulierte Metall-organische Gerüste mit Rutheniumzentren: Sorption und katalytische Eigenschaften. Angewandte Chemie. 126(27):7178-7182. doi:10.1002/ange.201311128

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71698

Files in this item

Item Metadata

Title: Multifunktionale, Defekt-manipulierte Metall-organische Gerüste mit Rutheniumzentren: Sorption und katalytische Eigenschaften
Author: Kozachuk, Olesia Luz Mínguez, Ignacio Llabrés i Xamena, Francesc Xavier Noei, Heshmat Kauer, Max Bauke Albada, H. Bloch, Eric D. Marler, Bernd Wang, Yuemin Muhler, Martin Fischer, Roland A.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[DE] Das Konzept der “festen Lösungen mit gemischten Linkern” (mixed-linker solid solution concept) ist angewendet worden, um die Metallzentren des gemischtvalenten RuII/III-Analogons der bekannten Familie der [M3II,II(btc)2]-MOFs ...[+]
Subjects: CO2-Reduktion , Heterogene Katalyse , Metall-organische Gerste , Strukturelle Defekte , Wasserstoffspaltung
Copyrigths: Cerrado
Source:
Angewandte Chemie. (issn: 1521-3757 )
DOI: 10.1002/ange.201311128
Publisher:
Wiley
Publisher version: http://dx.doi.org/10.1002/ange.201311128
Type: Artículo

References

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444

Chem. Soc. Rev. 2009 38

Chem. Soc. Rev. 2011 40 [+]
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444

Chem. Soc. Rev. 2009 38

Chem. Soc. Rev. 2011 40

Chem. Rev. 2012 112

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Uemura, T., Uchida, N., Higuchi, M., & Kitagawa, S. (2011). Effects of Unsaturated Metal Sites on Radical Vinyl Polymerization in Coordination Nanochannels. Macromolecules, 44(8), 2693-2697. doi:10.1021/ma200310x

Fu, Y.-Y., Yang, C.-X., & Yan, X.-P. (2012). Control of the Coordination Status of the Open Metal Sites in Metal–Organic Frameworks for High Performance Separation of Polar Compounds. Langmuir, 28(17), 6794-6802. doi:10.1021/la300298e

Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148

Kramer, M., Schwarz, U., & Kaskel, S. (2006). Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1). Journal of Materials Chemistry, 16(23), 2245. doi:10.1039/b601811d

Murray, L. J., Dinca, M., Yano, J., Chavan, S., Bordiga, S., Brown, C. M., & Long, J. R. (2010). Highly-Selective and Reversible O2Binding in Cr3(1,3,5-benzenetricarboxylate)2. Journal of the American Chemical Society, 132(23), 7856-7857. doi:10.1021/ja1027925

Maniam, P., & Stock, N. (2011). Investigation of Porous Ni-Based Metal–Organic Frameworks Containing Paddle-Wheel Type Inorganic Building Units via High-Throughput Methods. Inorganic Chemistry, 50(11), 5085-5097. doi:10.1021/ic200381f

Feldblyum, J. I., Liu, M., Gidley, D. W., & Matzger, A. J. (2011). Reconciling the Discrepancies between Crystallographic Porosity and Guest Access As Exemplified by Zn-HKUST-1. Journal of the American Chemical Society, 133(45), 18257-18263. doi:10.1021/ja2055935

Huang, L. (2003). Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 58(2), 105-114. doi:10.1016/s1387-1811(02)00609-1

Marx, S., Kleist, W., & Baiker, A. (2011). Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. Journal of Catalysis, 281(1), 76-87. doi:10.1016/j.jcat.2011.04.004

Park, T.-H., Hickman, A. J., Koh, K., Martin, S., Wong-Foy, A. G., Sanford, M. S., & Matzger, A. J. (2011). Highly Dispersed Palladium(II) in a Defective Metal–Organic Framework: Application to C–H Activation and Functionalization. Journal of the American Chemical Society, 133(50), 20138-20141. doi:10.1021/ja2094316

St. Petkov, P., Vayssilov, G. N., Liu, J., Shekhah, O., Wang, Y., Wöll, C., & Heine, T. (2012). Defects in MOFs: A Thorough Characterization. ChemPhysChem, 13(8), 2025-2029. doi:10.1002/cphc.201200222

Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., … Bats, N. (2010). Catalysis of Transesterification by a Nonfunctionalized Metal−Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR andab InitioCalculations. Journal of the American Chemical Society, 132(35), 12365-12377. doi:10.1021/ja103365s

Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058

Ravon, U., Savonnet, M., Aguado, S., Domine, M. E., Janneau, E., & Farrusseng, D. (2010). Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous and Mesoporous Materials, 129(3), 319-329. doi:10.1016/j.micromeso.2009.06.008

Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u

Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal–organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509. doi:10.1039/c1cc11107h

Noei, H., Kozachuk, O., Amirjalayer, S., Bureekaew, S., Kauer, M., Schmid, R., … Wang, Y. (2013). CO Adsorption on a Mixed-Valence Ruthenium Metal–Organic Framework Studied by UHV-FTIR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry C, 117(11), 5658-5666. doi:10.1021/jp3056366

Burrows, A. D. (2011). Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 13(11), 3623. doi:10.1039/c0ce00568a

Wang, Y., Glenz, A., Muhler, M., & Wöll, C. (2009). A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Review of Scientific Instruments, 80(11), 113108. doi:10.1063/1.3257677

Raskó, J. (1998). Catalysis Letters, 56(1), 11-15. doi:10.1023/a:1019072021006

Usubharatana, P., McMartin, D., Veawab, A., & Tontiwachwuthikul, P. (2006). Photocatalytic Process for CO2Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research, 45(8), 2558-2568. doi:10.1021/ie0505763

Indrakanti, V. P., Kubicki, J. D., & Schobert, H. H. (2009). Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2(7), 745. doi:10.1039/b822176f

Mori, K., Yamashita, H., & Anpo, M. (2012). Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances, 2(8), 3165. doi:10.1039/c2ra01332k

Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., & Kubiak, C. P. (2012). Photochemical and Photoelectrochemical Reduction of CO2. Annual Review of Physical Chemistry, 63(1), 541-569. doi:10.1146/annurev-physchem-032511-143759

Benson, E. E., Kubiak, C. P., Sathrum, A. J., & Smieja, J. M. (2009). Electrocatalytic and homogeneous approaches to conversion of CO2to liquid fuels. Chem. Soc. Rev., 38(1), 89-99. doi:10.1039/b804323j

Wang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133(34), 13445-13454. doi:10.1021/ja203564w

Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie, 124(14), 3420-3423. doi:10.1002/ange.201108357

Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357

Tsukahara, Y., Wada, T., & Tanaka, K. (2010). Redox Behavior of Ruthenium(Bipyridine)(Terpyridine)(Carbonyl) Complex-modified Carbon Electrode and Reactivity toward Electrochemical Reduction of CO2. Chemistry Letters, 39(11), 1134-1135. doi:10.1246/cl.2010.1134

Chen, Z., Chen, C., Weinberg, D. R., Kang, P., Concepcion, J. J., Harrison, D. P., … Meyer, T. J. (2011). Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chemical Communications, 47(47), 12607. doi:10.1039/c1cc15071e

Planas, N., Ono, T., Vaquer, L., Miró, P., Benet-Buchholz, J., Gagliardi, L., … Llobet, A. (2011). Carbon dioxide reduction by mononuclear ruthenium polypyridyl complexes. Physical Chemistry Chemical Physics, 13(43), 19480. doi:10.1039/c1cp22814e

Jain, S. L., & Sain, B. (2002). Ruthenium catalyzed oxidation of tertiary nitrogen compounds with molecular oxygen: an easy access to N-oxides under mild conditions. Chemical Communications, (10), 1040-1041. doi:10.1039/b202744p

Kaesz, H. D., & Saillant, R. B. (1972). Hydride complexes of the transition metals. Chemical Reviews, 72(3), 231-281. doi:10.1021/cr60277a003

Sellmann, D., Prakash, R., Heinemann, F. W., Moll, M., & Klimowicz, M. (2004). Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie, 116(14), 1913-1916. doi:10.1002/ange.200453717

Sellmann, D., Prakash, R., Heinemann, F. W., Moll, M., & Klimowicz, M. (2004). Heterolytic Cleavage of H2 at a Sulfur-Bridged Dinuclear Ruthenium Center. Angewandte Chemie International Edition, 43(14), 1877-1880. doi:10.1002/anie.200453717

Wang, X., & Andrews, L. (2009). Infrared Spectra and Theoretical Calculations for Fe, Ru, and Os Metal Hydrides and Dihydrogen Complexes. The Journal of Physical Chemistry A, 113(3), 551-563. doi:10.1021/jp806845h

LAU, C., NG, S., JIA, G., & LIN, Z. (2007). Some ruthenium hydride, dihydrogen, and dihydrogen-bonded complexes in catalytic reactions. Coordination Chemistry Reviews, 251(17-20), 2223-2237. doi:10.1016/j.ccr.2006.12.001

Yamaguchi, K., & Mizuno, N. (2003). Angewandte Chemie, 115(13), 1518-1521. doi:10.1002/ange.200250779

Yamaguchi, K., & Mizuno, N. (2003). Efficient Heterogeneous Aerobic Oxidation of Amines by a Supported Ruthenium Catalyst. Angewandte Chemie International Edition, 42(13), 1480-1483. doi:10.1002/anie.200250779

Su, F., Lee, F. Y., Lv, L., Liu, J., Tian, X. N., & Zhao, X. S. (2007). Sandwiched Ruthenium/Carbon Nanostructures for Highly Active Heterogeneous Hydrogenation. Advanced Functional Materials, 17(12), 1926-1931. doi:10.1002/adfm.200700067

Over, H. (2012). Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews, 112(6), 3356-3426. doi:10.1021/cr200247n

Miura, H., Wada, K., Hosokawa, S., Sai, M., Kondo, T., & Inoue, M. (2009). A heterogeneous Ru/CeO2 catalyst effective for transfer-allylation from homoallyl alcohols to aldehydes. Chemical Communications, (27), 4112. doi:10.1039/b901830a

Tannenbaum, R. (1994). Three-Dimensional Coordination Polymers of Ruthenium(2+) with 1,4-Diisocyanobenzene Ligands and Their Catalytic Activity. Chemistry of Materials, 6(4), 550-555. doi:10.1021/cm00040a034

Tannenbaum, R. (1996). Radiation enhancement of the catalytic properties of three-dimensional coordination polymers of Ru(II) with diisocyanide ligands. Journal of Molecular Catalysis A: Chemical, 107(1-3), 207-215. doi:10.1016/1381-1169(95)00221-9

Sato, T., Mori, W., Nozaki Kato, C., Ohmura, T., Sato, T., Yokoyama, K., … Naito, S. (2003). Microporous Rhodium(II) 4,4′,4″,4″′-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakisbenzoate. Synthesis, Nitrogen Adsorption Properties, and Catalytic Performance for Hydrogenation of Olefin. Chemistry Letters, 32(9), 854-855. doi:10.1246/cl.2003.854

SATO, T., MORI, W., KATO, C., YANAOKA, E., KURIBAYASHI, T., OHTERA, R., & SHIRAISHI, Y. (2005). Novel microporous rhodium(II) carboxylate polymer complexes containing metalloporphyrin: syntheses and catalytic performances in hydrogenation of olefins. Journal of Catalysis, 232(1), 186-198. doi:10.1016/j.jcat.2005.02.007

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record