- -

On topological groups with remainder of character k

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On topological groups with remainder of character k

Show full item record

Bonanzinga, M.; Cuzzupè, MV. (2016). On topological groups with remainder of character k. Applied General Topology. 17(1):51-55. doi:10.4995/agt.2016.4376.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/72367

Files in this item

Item Metadata

Title: On topological groups with remainder of character k
Author: Bonanzinga, Maddalena Cuzzupè, Maria Vittoria
Issued date:
Abstract:
[EN] In [A.V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder, Top. Proc. 42 (2013), 157-163] it is proved that the character of a non-locally compact topological group with a first ...[+]
Subjects: Character , Compactification , $\pi$-base , Remainder , Topological group
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2016.4376
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2016.4376
Type: Artículo

References

A. V. Arhangel'skii, Construction and classification of topological spaces and cardinal invariants, Uspehi Mat. Nauk. 33, no. 6 (1978), 29-84.

A.V. Arhangel'skii, On the cardinality of bicompacta satisfying the first axiom of countability, Doklady Acad. Nauk SSSR 187 (1969), 967-970.

A.V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder, Topology Proc. 42 (2013), 157-163. [+]
A. V. Arhangel'skii, Construction and classification of topological spaces and cardinal invariants, Uspehi Mat. Nauk. 33, no. 6 (1978), 29-84.

A.V. Arhangel'skii, On the cardinality of bicompacta satisfying the first axiom of countability, Doklady Acad. Nauk SSSR 187 (1969), 967-970.

A.V. Arhangel'skii and J. van Mill, On topological groups with a first-countable remainder, Topology Proc. 42 (2013), 157-163.

R. Engelking, General Topology, Heldermann Verlag, Berlin, second ed., 1989.

I. Juhász, Cardinal functions in topology--ten years later, Mathematical Centre Tract, vol. 123, Mathematical Centre, Amsterdam, 1980.

[-]

This item appears in the following Collection(s)

Show full item record