Mostrar el registro sencillo del ítem
dc.contributor.author | Kannan, V | es_ES |
dc.contributor.author | Gopal, Sharan | es_ES |
dc.date.accessioned | 2016-10-20T09:58:31Z | |
dc.date.available | 2016-10-20T09:58:31Z | |
dc.date.issued | 2016-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/72398 | |
dc.description.abstract | [EN] The sets of periodic points of self homeomorphisms on an ordinal of finite derived length are characterised, thus characterising the same for homeomorphisms on compact metric spaces with finite derived length. A partition of ordinal is introduced to study this problem which is also used to solve two more problems: one about an equivalence relation and the other about a group action, both on an ordinal of finite derived length. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ordinal | es_ES |
dc.subject | Homeomorphism | es_ES |
dc.subject | Periodic point | es_ES |
dc.title | Homeomorphisms on compact metric spaces with finite derived length | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2016-10-20T08:33:29Z | |
dc.identifier.doi | 10.4995/agt.2016.4593 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Kannan, V.; Gopal, S. (2016). Homeomorphisms on compact metric spaces with finite derived length. Applied General Topology. 17(2):129-137. https://doi.org/10.4995/agt.2016.4593 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2016.4593 | es_ES |
dc.description.upvformatpinicio | 129 | es_ES |
dc.description.upvformatpfin | 137 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Baker, I. N. (1964). Fixpoints of Polynomials and Rational Functions. Journal of the London Mathematical Society, s1-39(1), 615-622. doi:10.1112/jlms/s1-39.1.615 | es_ES |
dc.description.references | Delahaye, J.-P. (1981). The Set of Periodic Points. The American Mathematical Monthly, 88(9), 646. doi:10.2307/2320668 | es_ES |
dc.description.references | Subramania Pillai, I., Ali Akbar, K., Kannan, V., & Sankararao, B. (2010). Sets of all periodic points of a toral automorphism. Journal of Mathematical Analysis and Applications, 366(1), 367-371. doi:10.1016/j.jmaa.2009.12.032 | es_ES |