- -

Chaotic Behaviour on Invariant Sets of Linear Operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chaotic Behaviour on Invariant Sets of Linear Operators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Murillo Arcila, Marina es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.date.accessioned 2016-10-20T14:36:17Z
dc.date.available 2016-10-20T14:36:17Z
dc.date.issued 2015
dc.identifier.issn 0378-620X
dc.identifier.uri http://hdl.handle.net/10251/72432
dc.description.abstract We study hypercyclicity, Devaney chaos, topological mixing properties and strong mixing in the measure-theoretic sense for operators on topological vector spaces with invariant sets. More precisely, our purpose is to establish links between the fact of satisfying any of our dynamical properties on certain invariant sets, and the corresponding property on the closed linear span of the invariant set, or on the union of the invariant sets. Viceversa, we give conditions on the operator (or C0-semigroup) to ensure that, when restricted to the invariant set, it satisfies certain dynamical property. Particular attention is given to the case of positive operators and semigroups on lattices, and the (invariant) positive cone. We also present examples that illustrate these results. es_ES
dc.description.sponsorship This work is supported in part by MICINN and FEDER, Projects MTM2010-14909 and MTM2013-47093-P, and by GVA, Project PROMETEOII/2013/013. The first author is supported by a Grant from the FPU Program of MEC. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Integral Equations and Operator Theory es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hypercyclic operators es_ES
dc.subject Invariant sets es_ES
dc.subject Topological mixing es_ES
dc.subject Devaney chaos es_ES
dc.subject Mixing measures es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Chaotic Behaviour on Invariant Sets of Linear Operators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00020-014-2188-z
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura es_ES
dc.description.bibliographicCitation Murillo Arcila, M.; Peris Manguillot, A. (2015). Chaotic Behaviour on Invariant Sets of Linear Operators. Integral Equations and Operator Theory. 81(4):483-497. https://doi.org/10.1007/s00020-014-2188-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00020-014-2188-z es_ES
dc.description.upvformatpinicio 483 es_ES
dc.description.upvformatpfin 497 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 81 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 310445 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Ministerio de Educación, Cultura y Deporte
dc.contributor.funder Generalitat Valenciana
dc.description.references Aroza J., Kalmes T., Mangino E.: Chaotic C 0-semigroups induced by semiflows in Lebesgue and Sobolev spaces. J. Math. Anal. Appl. 412, 77–98 (2014) es_ES
dc.description.references Aroza J., Peris A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18, 647–655 (2012) es_ES
dc.description.references Banasiak J., Moszyński M.: A generalization of Desch-Schappacher-Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12, 959–972 (2005) es_ES
dc.description.references Banasiak J., Moszyński M.: Dynamics of birth-and-death processes with proliferation—stability and chaos. Discret. Contin. Dyn. Syst. 29, 67–79 (2011) es_ES
dc.description.references Bartoll S., Martínez-Giménez F., Peris A.: The specification property for backward shifts. J. Differ. Equ. Appl. 18, 599–605 (2012) es_ES
dc.description.references Bauer W., Sigmund K.: Topological dynamics of transformations induced on the space of probability measures. Monatsh. Math. 79, 81–92 (1975) es_ES
dc.description.references Bayart F., Grivaux S.: Hypercyclicity and unimodular point spectrum. J. Funct. Anal. 226, 281–300 (2005) es_ES
dc.description.references Bayart F., Matheron É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009) es_ES
dc.description.references Bayart, F., Matheron, É.: Mixing operators and small subsets of the circle. J. Reine Angew. Math. (2014). doi: 10.1515/crelle-2014-0002 es_ES
dc.description.references Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergod. Theory Dyn. Syst. 27, 383–404 (2007). Erratum: Ergod. Theory Dyn. Systems 29, 1993–1994 (2009) es_ES
dc.description.references Bonet J., Frerick L., Peris A., Wengenroth J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37, 254–264 (2005) es_ES
dc.description.references Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Benjamin/Cummings, Menlo Park, CA, (1986); second edition, Addison-Wesley, Redwood City (1989) es_ES
dc.description.references Dineen S.: Complex Analysis on Infinite-Dimensional Spaces. Springer, London (1999) es_ES
dc.description.references Einsiedler M., Ward T.: Ergodic Theory with a View Towards Number Theory, Volume 259 of Graduate Texts in Mathematics. Springer-Verlag London Ltd., London (2011) es_ES
dc.description.references Feldman, N. S.: Linear chaos? http://home.wlu.edu/~feldmann/research.html (2001) es_ES
dc.description.references Flytzanis E.: Unimodular eigenvalues and linear chaos in Hilbert spaces. Geom. Funct. Anal. 5, 1–13 (1995) es_ES
dc.description.references Furstenberg H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967) es_ES
dc.description.references Glasner E.: Classifying dynamical systems by their recurrence properties. Topol. Methods Nonlinear Anal. 24, 21–40 (2004) es_ES
dc.description.references Godefroy G., Kalton N.J.: Lipschitz-free Banach spaces. Studi. Math. 159, 121–141 (2003) es_ES
dc.description.references Grivaux S.: Hypercyclic operators, mixing operators, and the bounded steps problem. J. Oper. Theory 54, 147–168 (2005) es_ES
dc.description.references Grivaux S., Matheron E.: Invariant measures for frequently hypercyclic operators. Adv. Math. 265, 371–427 (2014) es_ES
dc.description.references Grosse-Erdmann K.G., Peris A.: Weakly mixing operators on topological vector spaces. Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Mat. RACSAM 104, 413–426 (2010) es_ES
dc.description.references Grosse-Erdmann K.G., Peris Manguillot A.: Linear chaos. Universitext. Springer-Verlag London Ltd, London (2011) es_ES
dc.description.references Kalton N.J.: The nonlinear geometry of Banach spaces. Rev. Math. Complut. 21, 7–60 (2008) es_ES
dc.description.references Mangino E., Peris A.: Frequently hypercyclic semigroups. Studi. Math. 202, 227–242 (2011) es_ES
dc.description.references Matsui M., Takeo F.: Chaotic semigroups generated by certain differential operators of order 1. SUT J. Math. 37, 51–67 (2001) es_ES
dc.description.references Murillo-Arcila M., Peris A.: Mixing properties for nonautonomous linear dynamics and invariant sets. Appl. Math. Lett. 26, 215–218 (2013) es_ES
dc.description.references Murillo-Arcila M., Peris A.: Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398, 462–465 (2013) es_ES
dc.description.references Murillo-Arcila, M., Peris, A.: Strong mixing measures for C 0-semigroups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM (2014). doi: 10.1007/s13398-014-0169-3 es_ES
dc.description.references Protopopescu, V.: Linear vs nonlinear and infinite vs finite: an interpretation of chaos, Oak Ridge National Laboratory Report TM-11667, Oak Ridge, TN, (1990) es_ES
dc.description.references Schaefer H.H.: Topological Vector Spaces. Graduate Texts in Mathematics, Vol. 3. Springer, New York (1971) es_ES
dc.description.references Shkarin S.: Hypercyclic operators on topological vector spaces. J. Lond. Math. Soc. 86, 195–213 (2012) es_ES
dc.description.references Takeo F.: Chaos and hypercyclicity for solution semigroups to some partial differential equations. Nonlinear Anal. 63, 1943–1953 (2005) es_ES
dc.description.references Walters P.: An Introduction to Ergodic Theory. Springer, New York (1982) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem