Mostrar el registro sencillo del ítem
dc.contributor.author | Murillo Arcila, Marina | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.date.accessioned | 2016-10-20T14:36:17Z | |
dc.date.available | 2016-10-20T14:36:17Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0378-620X | |
dc.identifier.uri | http://hdl.handle.net/10251/72432 | |
dc.description.abstract | We study hypercyclicity, Devaney chaos, topological mixing properties and strong mixing in the measure-theoretic sense for operators on topological vector spaces with invariant sets. More precisely, our purpose is to establish links between the fact of satisfying any of our dynamical properties on certain invariant sets, and the corresponding property on the closed linear span of the invariant set, or on the union of the invariant sets. Viceversa, we give conditions on the operator (or C0-semigroup) to ensure that, when restricted to the invariant set, it satisfies certain dynamical property. Particular attention is given to the case of positive operators and semigroups on lattices, and the (invariant) positive cone. We also present examples that illustrate these results. | es_ES |
dc.description.sponsorship | This work is supported in part by MICINN and FEDER, Projects MTM2010-14909 and MTM2013-47093-P, and by GVA, Project PROMETEOII/2013/013. The first author is supported by a Grant from the FPU Program of MEC. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Integral Equations and Operator Theory | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hypercyclic operators | es_ES |
dc.subject | Invariant sets | es_ES |
dc.subject | Topological mixing | es_ES |
dc.subject | Devaney chaos | es_ES |
dc.subject | Mixing measures | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Chaotic Behaviour on Invariant Sets of Linear Operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00020-014-2188-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura | es_ES |
dc.description.bibliographicCitation | Murillo Arcila, M.; Peris Manguillot, A. (2015). Chaotic Behaviour on Invariant Sets of Linear Operators. Integral Equations and Operator Theory. 81(4):483-497. https://doi.org/10.1007/s00020-014-2188-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00020-014-2188-z | es_ES |
dc.description.upvformatpinicio | 483 | es_ES |
dc.description.upvformatpfin | 497 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 81 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 310445 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | European Regional Development Fund | |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Aroza J., Kalmes T., Mangino E.: Chaotic C 0-semigroups induced by semiflows in Lebesgue and Sobolev spaces. J. Math. Anal. Appl. 412, 77–98 (2014) | es_ES |
dc.description.references | Aroza J., Peris A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18, 647–655 (2012) | es_ES |
dc.description.references | Banasiak J., Moszyński M.: A generalization of Desch-Schappacher-Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12, 959–972 (2005) | es_ES |
dc.description.references | Banasiak J., Moszyński M.: Dynamics of birth-and-death processes with proliferation—stability and chaos. Discret. Contin. Dyn. Syst. 29, 67–79 (2011) | es_ES |
dc.description.references | Bartoll S., Martínez-Giménez F., Peris A.: The specification property for backward shifts. J. Differ. Equ. Appl. 18, 599–605 (2012) | es_ES |
dc.description.references | Bauer W., Sigmund K.: Topological dynamics of transformations induced on the space of probability measures. Monatsh. Math. 79, 81–92 (1975) | es_ES |
dc.description.references | Bayart F., Grivaux S.: Hypercyclicity and unimodular point spectrum. J. Funct. Anal. 226, 281–300 (2005) | es_ES |
dc.description.references | Bayart F., Matheron É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009) | es_ES |
dc.description.references | Bayart, F., Matheron, É.: Mixing operators and small subsets of the circle. J. Reine Angew. Math. (2014). doi: 10.1515/crelle-2014-0002 | es_ES |
dc.description.references | Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergod. Theory Dyn. Syst. 27, 383–404 (2007). Erratum: Ergod. Theory Dyn. Systems 29, 1993–1994 (2009) | es_ES |
dc.description.references | Bonet J., Frerick L., Peris A., Wengenroth J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37, 254–264 (2005) | es_ES |
dc.description.references | Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Benjamin/Cummings, Menlo Park, CA, (1986); second edition, Addison-Wesley, Redwood City (1989) | es_ES |
dc.description.references | Dineen S.: Complex Analysis on Infinite-Dimensional Spaces. Springer, London (1999) | es_ES |
dc.description.references | Einsiedler M., Ward T.: Ergodic Theory with a View Towards Number Theory, Volume 259 of Graduate Texts in Mathematics. Springer-Verlag London Ltd., London (2011) | es_ES |
dc.description.references | Feldman, N. S.: Linear chaos? http://home.wlu.edu/~feldmann/research.html (2001) | es_ES |
dc.description.references | Flytzanis E.: Unimodular eigenvalues and linear chaos in Hilbert spaces. Geom. Funct. Anal. 5, 1–13 (1995) | es_ES |
dc.description.references | Furstenberg H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967) | es_ES |
dc.description.references | Glasner E.: Classifying dynamical systems by their recurrence properties. Topol. Methods Nonlinear Anal. 24, 21–40 (2004) | es_ES |
dc.description.references | Godefroy G., Kalton N.J.: Lipschitz-free Banach spaces. Studi. Math. 159, 121–141 (2003) | es_ES |
dc.description.references | Grivaux S.: Hypercyclic operators, mixing operators, and the bounded steps problem. J. Oper. Theory 54, 147–168 (2005) | es_ES |
dc.description.references | Grivaux S., Matheron E.: Invariant measures for frequently hypercyclic operators. Adv. Math. 265, 371–427 (2014) | es_ES |
dc.description.references | Grosse-Erdmann K.G., Peris A.: Weakly mixing operators on topological vector spaces. Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Mat. RACSAM 104, 413–426 (2010) | es_ES |
dc.description.references | Grosse-Erdmann K.G., Peris Manguillot A.: Linear chaos. Universitext. Springer-Verlag London Ltd, London (2011) | es_ES |
dc.description.references | Kalton N.J.: The nonlinear geometry of Banach spaces. Rev. Math. Complut. 21, 7–60 (2008) | es_ES |
dc.description.references | Mangino E., Peris A.: Frequently hypercyclic semigroups. Studi. Math. 202, 227–242 (2011) | es_ES |
dc.description.references | Matsui M., Takeo F.: Chaotic semigroups generated by certain differential operators of order 1. SUT J. Math. 37, 51–67 (2001) | es_ES |
dc.description.references | Murillo-Arcila M., Peris A.: Mixing properties for nonautonomous linear dynamics and invariant sets. Appl. Math. Lett. 26, 215–218 (2013) | es_ES |
dc.description.references | Murillo-Arcila M., Peris A.: Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398, 462–465 (2013) | es_ES |
dc.description.references | Murillo-Arcila, M., Peris, A.: Strong mixing measures for C 0-semigroups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM (2014). doi: 10.1007/s13398-014-0169-3 | es_ES |
dc.description.references | Protopopescu, V.: Linear vs nonlinear and infinite vs finite: an interpretation of chaos, Oak Ridge National Laboratory Report TM-11667, Oak Ridge, TN, (1990) | es_ES |
dc.description.references | Schaefer H.H.: Topological Vector Spaces. Graduate Texts in Mathematics, Vol. 3. Springer, New York (1971) | es_ES |
dc.description.references | Shkarin S.: Hypercyclic operators on topological vector spaces. J. Lond. Math. Soc. 86, 195–213 (2012) | es_ES |
dc.description.references | Takeo F.: Chaos and hypercyclicity for solution semigroups to some partial differential equations. Nonlinear Anal. 63, 1943–1953 (2005) | es_ES |
dc.description.references | Walters P.: An Introduction to Ergodic Theory. Springer, New York (1982) | es_ES |