Mostrar el registro sencillo del ítem
dc.contributor.author | Parra Vega, Verónica | es_ES |
dc.contributor.author | Corral Martínez, Patricia | es_ES |
dc.contributor.author | Rivas-Sendra, Alba | es_ES |
dc.contributor.author | Seguí-Simarro, Jose M. | es_ES |
dc.date.accessioned | 2016-11-07T14:18:07Z | |
dc.date.available | 2016-11-07T14:18:07Z | |
dc.date.issued | 2015-02 | |
dc.identifier.issn | 1664-462X | |
dc.identifier.uri | http://hdl.handle.net/10251/73407 | |
dc.description.abstract | [EN] The change in developmental fate of microspores reprogrammed toward embryogenesis is a complex but fascinating experimental system where microspores undergo dramatic changes derived from the developmental switch. After 40 years of study of the ultrastructural changes undergone by the induced microspores, many questions are still open. In this work, we analyzed the architecture of DNA-containing organelles such as plastids and mitochondria in samples of B. napus isolated microspore cultures covering the different stages before, during, and after the developmental switch. Mitochondria presented a conventional oval or sausage-like morphology for all cell types studied, similar to that found in vivo in other cell types from vegetative parts. Similarly, plastids of microspores before induction and of non-induced cells showed conventional architectures. However, approximately 40% of the plastids of embryogenic microspores presented atypical features such as curved profiles, protrusions, and internal compartments filled with cytoplasm. Three-dimensional reconstructions confirmed that these plastids actually engulf cytoplasm regions, isolating them from the rest of the cell. Acid phosphatase activity was found in them, confirming the lytic activity of these organelles. In addition, digested plastid-like structures were found excreted to the apoplast. All these phenomena seemed transient, since microspore-derived embryos (MDEs) showed conventional plastids. Together, these results strongly suggested that under special circumstances, such as those of the androgenic switch, plastids of embryogenic microspores behave as autophagic plastids (plastolysomes), engulfing cytoplasm for digestion, and then are excreted out of the cytoplasm as part of a cleaning program necessary for microspores to become embryos. | es_ES |
dc.description.sponsorship | We especially thank Professor L. Andrew Staehelin for his help and advice during the stay of JMSS at his lab at UC Boulder, where part of the samples used in this work was processed. We also want to express our thanks to the staff of the COMAV greenhouses and to the staff of the Electron Microscopy Service of Universitat Politecnica de Valencia for their excellent technical help. This work was supported by the following grants to JMSS: AGL2010-17895 from Spanish MICINN and ACOMP/2012/168 from Generalitat Valenciana. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Androgenesis | es_ES |
dc.subject | Cryomethods | es_ES |
dc.subject | Electron microscopy | es_ES |
dc.subject | Microspore embryogenesis | es_ES |
dc.subject | Rapeseed | es_ES |
dc.subject | Electron Microscopy Service of the UPV | |
dc.subject.classification | GENETICA | es_ES |
dc.title | Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2015.00094 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-17895/ES/GENERACION EFICIENTE DE DOBLE HAPLOIDES EN BERENJENA Y PIMIENTO MEDIANTE CULTIVO IN VITRO DE MICROSPORAS AISLADAS. ANALISIS CELULAR Y MOLECULAR DEL DESARROLLO ANDROGENICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F168/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Parra Vega, V.; Corral Martínez, P.; Rivas-Sendra, A.; Seguí-Simarro, JM. (2015). Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores. Frontiers in Plant Science. 6(94). https://doi.org/10.3389/fpls.2015.00094 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.3389/fpls.2015.00094 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 94 | es_ES |
dc.relation.senia | 289412 | es_ES |
dc.identifier.pmcid | PMC4333807 | en_EN |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., … Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. The Journal of Cell Biology, 133(6), 1251-1263. doi:10.1083/jcb.133.6.1251 | es_ES |
dc.description.references | Clément, C., & Pacini, E. (2001). Anther plastids in angiosperms. The Botanical Review, 67(1), 54-73. doi:10.1007/bf02857849 | es_ES |
dc.description.references | Corral-Martínez, P., Parra-Vega, V., & Seguí-Simarro, J. M. (2013). Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. Journal of Experimental Botany, 64(10), 3061-3075. doi:10.1093/jxb/ert151 | es_ES |
dc.description.references | Datta, R., Chamusco, K. C., & Chourey, P. S. (2002). Starch Biosynthesis during Pollen Maturation Is Associated with Altered Patterns of Gene Expression in Maize. Plant Physiology, 130(4), 1645-1656. doi:10.1104/pp.006908 | es_ES |
dc.description.references | Dunwell, J. M. (2010). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal, 8(4), 377-424. doi:10.1111/j.1467-7652.2009.00498.x | es_ES |
dc.description.references | DUNWELL, J. M., & SUNDERLAND, N. (1974). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 25(2), 352-361. doi:10.1093/jxb/25.2.352 | es_ES |
dc.description.references | DUNWELL, J. M., & SUNDERLAND, N. (1974). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 25(2), 363-373. doi:10.1093/jxb/25.2.363 | es_ES |
dc.description.references | DUNWELL, J. M., & SUNDERLAND, N. (1975). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 26(2), 240-252. doi:10.1093/jxb/26.2.240 | es_ES |
dc.description.references | Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in Plant Science, 12(8), 368-375. doi:10.1016/j.tplants.2007.06.007 | es_ES |
dc.description.references | G�rtner, P.-J., & Nagl, W. (1980). Acid phosphatase activity in plastids (plastolysomes) of senescing embryo-suspensor cells. Planta, 149(4), 341-349. doi:10.1007/bf00571168 | es_ES |
dc.description.references | Gilkey, J. C., & Staehelin, L. A. (1986). Advances in ultrarapid freezing for the preservation of cellular ultrastructure. Journal of Electron Microscopy Technique, 3(2), 177-210. doi:10.1002/jemt.1060030206 | es_ES |
dc.description.references | Hause, B. (1993). Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of Brassica napus L. Cell Biology International, 17(2), 153-168. doi:10.1006/cbir.1993.1052 | es_ES |
dc.description.references | Kremer, J. R., Mastronarde, D. N., & McIntosh, J. R. (1996). Computer Visualization of Three-Dimensional Image Data Using IMOD. Journal of Structural Biology, 116(1), 71-76. doi:10.1006/jsbi.1996.0013 | es_ES |
dc.description.references | Li, F., & Vierstra, R. D. (2012). Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science, 17(9), 526-537. doi:10.1016/j.tplants.2012.05.006 | es_ES |
dc.description.references | Rose, T. L., Bonneau, L., Der, C., Marty-Mazars, D., & Marty, F. (2006). Starvation-induced expression of autophagy-related genes in Arabidopsis. Biology of the Cell, 98(1), 53-67. doi:10.1042/bc20040516 | es_ES |
dc.description.references | Makowska, K., & Oleszczuk, S. (2013). Albinism in barley androgenesis. Plant Cell Reports, 33(3), 385-392. doi:10.1007/s00299-013-1543-x | es_ES |
dc.description.references | Mandaron, P., Niogret, M. E., Mache, R., & Monéger, F. (1990). In vitro protein synthesis in isolated microspores of Zea mays at several stages of development. Theoretical and Applied Genetics, 80(1), 134-138. doi:10.1007/bf00224027 | es_ES |
dc.description.references | Maraschin, S. F., de Priester, W., Spaink, H. P., & Wang, M. (2005). Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 56(417), 1711-1726. doi:10.1093/jxb/eri190 | es_ES |
dc.description.references | McDonald, K. L., & Auer, M. (2006). High-Pressure Freezing, Cellular Tomography, and Structural Cell Biology. BioTechniques, 41(2), 137-143. doi:10.2144/000112226 | es_ES |
dc.description.references | Nagl, W. (1977). «Plastolysomes» — Plastids Involved in the Autolysis of the Embryo-Suspensor in Phaseolus. Zeitschrift für Pflanzenphysiologie, 85(1), 45-51. doi:10.1016/s0044-328x(77)80263-8 | es_ES |
dc.description.references | Nitsch, C., & Nitsch, J. P. (1967). The induction of flowering in vitro in stem segments of Plumbago indica L. Planta, 72(4), 355-370. doi:10.1007/bf00390146 | es_ES |
dc.description.references | Nitsch, J. P., & Nitsch, C. (1969). Haploid Plants from Pollen Grains. Science, 163(3862), 85-87. doi:10.1126/science.163.3862.85 | es_ES |
dc.description.references | Otegui, M. S., Noh, Y.-S., Martínez, D. E., Vila Petroff, M. G., Andrew Staehelin, L., Amasino, R. M., & Guiamet, J. J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant Journal, 41(6), 831-844. doi:10.1111/j.1365-313x.2005.02346.x | es_ES |
dc.description.references | Reyes, F. C., Chung, T., Holding, D., Jung, R., Vierstra, R., & Otegui, M. S. (2011). Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells. The Plant Cell, 23(2), 769-784. doi:10.1105/tpc.110.082156 | es_ES |
dc.description.references | Sangwan, R. S., & Sangwan-Norreel, B. S. (1987). Ultrastructural cytology of plastids in pollen grains of certain androgenic and nonandrogenic plants. Protoplasma, 138(1), 11-22. doi:10.1007/bf01281180 | es_ES |
dc.description.references | Satpute, G. K., Long, H., Seguí-Simarro, J. M., Risueño, M. C., & Testillano, P. S. (2005). Cell architecture during gametophytic and embryogenic microspore development in Brassica napus L. Acta Physiologiae Plantarum, 27(4), 665-674. doi:10.1007/s11738-005-0070-y | es_ES |
dc.description.references | Seguí-Simarro, J. M. (2010). Androgenesis Revisited. The Botanical Review, 76(3), 377-404. doi:10.1007/s12229-010-9056-6 | es_ES |
dc.description.references | Seguí-Simarro, J. M. (2015). High-Pressure Freezing and Freeze Substitution of In Vivo and In Vitro Cultured Plant Samples. Plant Microtechniques and Protocols, 117-134. doi:10.1007/978-3-319-19944-3_7 | es_ES |
dc.description.references | Seguí-Simarro, J. M. (2015). Three-Dimensional Imaging for Electron Microscopy of Plastic-Embedded Plant Specimens. Plant Microtechniques and Protocols, 135-151. doi:10.1007/978-3-319-19944-3_8 | es_ES |
dc.description.references | Seguí-Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiologia Plantarum, 134(1), 1-12. doi:10.1111/j.1399-3054.2008.01113.x | es_ES |
dc.description.references | Shariatpanahi, M. E., Bal, U., Heberle-Bors, E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519-534. doi:10.1111/j.1399-3054.2006.00675.x | es_ES |
dc.description.references | Telmer, C. A., Newcomb, W., & Simmonds, D. H. (1995). Cellular changes during heat shock induction and embryo development of cultured microspores ofBrassica napus cv. Topas. Protoplasma, 185(1-2), 106-112. doi:10.1007/bf01272758 | es_ES |
dc.description.references | Testillano, P. S., Coronado, M. J., Seguı́, J. M., Domenech, J., González-Melendi, P., Raška, I., & Risueño, M. C. (2000). Defined Nuclear Changes Accompany the Reprogramming of the Microspore to Embryogenesis. Journal of Structural Biology, 129(2-3), 223-232. doi:10.1006/jsbi.2000.4249 | es_ES |
dc.description.references | Van Doorn, W. G., Kirasak, K., Sonong, A., Srihiran, Y., van Lent, J., & Ketsa, S. (2011). Do plastids inDendrobiumcv. Lucky Duan petals function similar to autophagosomes and autolysosomes? Autophagy, 7(6), 584-597. doi:10.4161/auto.7.6.15099 | es_ES |
dc.description.references | Zaki, M. A. M., & Dickinson, H. G. (1990). Structural changes during the first divisions of embryos resulting from anther and free microspore culture inBrassica napus. Protoplasma, 156(3), 149-162. doi:10.1007/bf01560653 | es_ES |
dc.description.references | Zaki, M. A. M., & Dickinson, H. G. (1991). Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sexual Plant Reproduction, 4(1). doi:10.1007/bf00194572 | es_ES |