- -

A local global pattern matching method for subsurface stochastic inverse modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A local global pattern matching method for subsurface stochastic inverse modeling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Li ., Liangping es_ES
dc.contributor.author Srinivasan, Sanjay es_ES
dc.contributor.author Zhou, Haiyan es_ES
dc.contributor.author Gómez Hernández, José Jaime
dc.date.accessioned 2016-11-09T09:24:34Z
dc.date.available 2016-11-09T09:24:34Z
dc.date.issued 2015-05-15
dc.identifier.issn 1364-8152
dc.identifier.uri http://hdl.handle.net/10251/73632
dc.description.abstract Inverse modeling is an essential step for reliable modeling of subsurface flow and transport, which is important for groundwater resource management and aquifer remediation. Multiple-point statistics (MPS) based reservoir modeling algorithms, beyond traditional two-point statistics-based methods, offer an alternative to simulate complex geological features and patterns, conditioning to observed conductivity data. Parameter estimation, within the framework of MPS, for the characterization of conductivity fields using measured dynamic data such as piezometric head data, remains one of the most challenging tasks in geologic modeling. We propose a new local global pattern matching method to integrate dynamic data into geological models. The local pattern is composed of conductivity and head values that are sampled from joint training images comprising of geological models and the corresponding simulated piezometric heads. Subsequently, a global constraint is enforced on the simulated geologic models in order to match the measured head data. The method is sequential in time, and as new piezometric head become available, the training images are updated for the purpose of reducing the computational cost of pattern matching. As a result, the final suite of models preserve the geologic features as well as match the dynamic data. This local global pattern matching method is demonstrated for simulating a two-dimensional, bimodally-distributed heterogeneous conductivity field. The results indicate that the characterization of conductivity as well as flow and transport predictions are improved when the piezometric head data are integrated into the geological modeling. (C) 2015 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support by DOE through projects DE-FE0004962 and DE-SC0001114. The last author acknowledges the support of the Spanish Ministry of Economy and Competitiveness through project CGL2011-23295. We greatly thank the three anonymous reviewers for their comments, which substantially improved the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Environmental Modelling and Software es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multiple-point geostatistics es_ES
dc.subject Conditional simulation es_ES
dc.subject Inverse modeling es_ES
dc.subject Global matching es_ES
dc.subject Uncertainty assessment es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title A local global pattern matching method for subsurface stochastic inverse modeling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.envsoft.2015.04.008
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FE0004962/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC0001114/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Li ., L.; Srinivasan, S.; Zhou, H.; Gómez Hernández, JJ. (2015). A local global pattern matching method for subsurface stochastic inverse modeling. Environmental Modelling and Software. 70:55-64. https://doi.org/10.1016/j.envsoft.2015.04.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.envsoft.2015.04.008 es_ES
dc.description.upvformatpinicio 55 es_ES
dc.description.upvformatpfin 64 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.relation.senia 300573 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder U.S. Department of Energy es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem