Mostrar el registro sencillo del ítem
dc.contributor.author | Li ., Liangping | es_ES |
dc.contributor.author | Srinivasan, Sanjay | es_ES |
dc.contributor.author | Zhou, Haiyan | es_ES |
dc.contributor.author | Gómez Hernández, José Jaime | |
dc.date.accessioned | 2016-11-09T09:24:34Z | |
dc.date.available | 2016-11-09T09:24:34Z | |
dc.date.issued | 2015-05-15 | |
dc.identifier.issn | 1364-8152 | |
dc.identifier.uri | http://hdl.handle.net/10251/73632 | |
dc.description.abstract | Inverse modeling is an essential step for reliable modeling of subsurface flow and transport, which is important for groundwater resource management and aquifer remediation. Multiple-point statistics (MPS) based reservoir modeling algorithms, beyond traditional two-point statistics-based methods, offer an alternative to simulate complex geological features and patterns, conditioning to observed conductivity data. Parameter estimation, within the framework of MPS, for the characterization of conductivity fields using measured dynamic data such as piezometric head data, remains one of the most challenging tasks in geologic modeling. We propose a new local global pattern matching method to integrate dynamic data into geological models. The local pattern is composed of conductivity and head values that are sampled from joint training images comprising of geological models and the corresponding simulated piezometric heads. Subsequently, a global constraint is enforced on the simulated geologic models in order to match the measured head data. The method is sequential in time, and as new piezometric head become available, the training images are updated for the purpose of reducing the computational cost of pattern matching. As a result, the final suite of models preserve the geologic features as well as match the dynamic data. This local global pattern matching method is demonstrated for simulating a two-dimensional, bimodally-distributed heterogeneous conductivity field. The results indicate that the characterization of conductivity as well as flow and transport predictions are improved when the piezometric head data are integrated into the geological modeling. (C) 2015 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support by DOE through projects DE-FE0004962 and DE-SC0001114. The last author acknowledges the support of the Spanish Ministry of Economy and Competitiveness through project CGL2011-23295. We greatly thank the three anonymous reviewers for their comments, which substantially improved the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Environmental Modelling and Software | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Multiple-point geostatistics | es_ES |
dc.subject | Conditional simulation | es_ES |
dc.subject | Inverse modeling | es_ES |
dc.subject | Global matching | es_ES |
dc.subject | Uncertainty assessment | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | A local global pattern matching method for subsurface stochastic inverse modeling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.envsoft.2015.04.008 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-FE0004962/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-SC0001114/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Li ., L.; Srinivasan, S.; Zhou, H.; Gómez Hernández, JJ. (2015). A local global pattern matching method for subsurface stochastic inverse modeling. Environmental Modelling and Software. 70:55-64. https://doi.org/10.1016/j.envsoft.2015.04.008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.envsoft.2015.04.008 | es_ES |
dc.description.upvformatpinicio | 55 | es_ES |
dc.description.upvformatpfin | 64 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 70 | es_ES |
dc.relation.senia | 300573 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |