- -

Two-point or multiple-point statistics? A comparison between the ensemble Kalman filtering and the ensemble pattern matching inverse methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Two-point or multiple-point statistics? A comparison between the ensemble Kalman filtering and the ensemble pattern matching inverse methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Li, Liangping es_ES
dc.contributor.author Srinivasan, Sanjay es_ES
dc.contributor.author Zhou, Haiyan es_ES
dc.contributor.author Gomez-Hernandez, J. Jaime es_ES
dc.date.accessioned 2016-11-10T15:51:22Z
dc.date.available 2016-11-10T15:51:22Z
dc.date.issued 2015-12
dc.identifier.issn 0309-1708
dc.identifier.uri http://hdl.handle.net/10251/73816
dc.description.abstract The Ensemble Kalman Filter (EnKF) has been commonly used to assimilate real time dynamic data into geologic models over the past decade. Despite its various advantages such as computational efficiency and its capability to handle multiple sources of uncertainty, the EnKF may not be used to reliably update models that are characterized by curvilinear geometries such as fluvial deposits where the permeable channels play a crucial role in the prediction of solute transport. It is well-known that the EnKF performs optimally for updating multi-Gaussian distributed fields, basically because it uses two-point statistics (i.e., covariances) to represent the relationship between the model parameters and between the model parameters and the observed response, and this is the only statistic necessary to fully characterize a multiGaussian distribution. The Ensemble PATtern matching (EnPAT) is an alternative ensemble based method that shows significant potential to condition complex geology such as channelized aquifers to dynamic data. The EnPAT is an evolution of the EnKF, replacing, in the analysis step, two-point statistics with multiple-point statistics. The advantages of EnPAT reside in its capability to honor the complex spatial connectivity of geologic structures as well as the measured static and dynamic data. In this work, the performance of the classical EnKF and the EnPAT are compared for modeling a synthetic channelized aquifer. The results reveal that the EnPAT yields a better prediction of transport characteristics than the EnKF because it characterizes the conductivity heterogeneity better. Issues such as uncertainty of multiple variables and the effect of measurement errors on EnPAT results will be discussed. © 2015 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship The first three authors gratefully acknowledge the financial support by the U.S. Department of Energy through project DE-FE0004962. The fourth author acknowledges the financial support by the Spanish Ministry of Economy and Competitiveness through project CGL2011-23295. We thank the guest editor Prof. Dr. Harrie-Jan Hendricks Franssen, as well as the reviewer Prof. Alberto Guadagnini and two anonymous reviewers for their comments, which substantially improved the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Advances in Water Resources es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multiple-point statistics es_ES
dc.subject Rejection sampling es_ES
dc.subject Conditional simulation es_ES
dc.subject Ensemble Kalman filter es_ES
dc.subject Inverse method es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Two-point or multiple-point statistics? A comparison between the ensemble Kalman filtering and the ensemble pattern matching inverse methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.advwatres.2015.05.014
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FE0004962/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Li, L.; Srinivasan, S.; Zhou, H.; Gomez-Hernandez, JJ. (2015). Two-point or multiple-point statistics? A comparison between the ensemble Kalman filtering and the ensemble pattern matching inverse methods. Advances in Water Resources. 86:297-310. https://doi.org/10.1016/j.advwatres.2015.05.014 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.advwatres.2015.05.014 es_ES
dc.description.upvformatpinicio 297 es_ES
dc.description.upvformatpfin 310 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 86 es_ES
dc.relation.senia 300521 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder U.S. Department of Energy es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem