- -

Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peiró Barber, Rosa Mª es_ES
dc.contributor.author Gammoudi, Najet es_ES
dc.contributor.author Yuste Del Carmen, Alberto es_ES
dc.contributor.author Olmos Castelló, Antonio es_ES
dc.contributor.author Gisbert Domenech, María Carmen es_ES
dc.date.accessioned 2016-11-11T10:32:12Z
dc.date.available 2016-11-11T10:32:12Z
dc.date.issued 2015-06
dc.identifier.issn 1695-971X
dc.identifier.uri http://hdl.handle.net/10251/73837
dc.description.abstract The conservation of old grapevine varieties is important since they are adapted to specific climate conditions and may carry genes interesting to breeders. As virus infection is common in grapevine varieties, the use of virus free materials is of great importance. In this work, we used somatic embryogenesis for the sanitation of GLRaV-1 and GLRaV-3 viruses that were found after analyzing the putative presence of the five most common, economically important grape viruses by real-time multiplex RT-PCR in the old cultivar Grumet Negre . Unopened and opened inflorescences, fecundated ovaries, and, also, mature seeds were used as starting explants. Explants were cultured on plates with two embryogenesis induction media (Nitsch & McCown Woody plant medium) that contained the growth regulator thidiazuron and differed in their salt and vitamin compositions. One half of each kindof explant was cut prior to being cultured. After five months of culture, embryos had only developed from seeds that were cut previous to sowing. To the best of our knowledge, this is the first time that mature seeds have been used for inducing embryogenesis in grape. A total of 42% of the embryos transferred to tubes for germination regenerated into normal plantlets. The absence of both the GLRaV-1 and GLRaV-3 viruses in all regenerated plants was confirmed by real-time uniplex RT-PCR. So, this protocol can be used for sanitation and also for micropropagation. es_ES
dc.description.sponsorship This work was supported by the INIA RTA2011-00067-C04-04 and RTA2011-00067-C04-01 projects co-funded with FEDER funds. en_EN
dc.language Inglés es_ES
dc.publisher Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) es_ES
dc.relation.ispartof Spanish Journal of Agricultural Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Embryogenesis es_ES
dc.subject Cultivar Grumet Negre es_ES
dc.subject Mature seeds es_ES
dc.subject Virus-free es_ES
dc.subject Micropropagation es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.title Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5424/sjar/2015132-7094
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2011-00067-C04-01/ES/Detección y caracterización molecular de virosis establecidas y emergentes de vid en España para su contención y control/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2011-00067-C04-04/ES/DESARROLLO Y APLICACION DE DISTINTAS TECNICAS DE CULTIVO IN VITRO PARA EL SANEAMIENTO, MICROPROPAGACION Y CONSERVACION DE VARIEDADES DE VID. DESARROLLO DE UN SISTEMA DE PURIFICACION DE PROPTOPLASTOS DE VID ADECUADO PARA EL ESTUDIO DE LA INFECCION Y LA REPLICACION VIRICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Peiró Barber, RM.; Gammoudi, N.; Yuste Del Carmen, A.; Olmos Castelló, A.; Gisbert Domenech, MC. (2015). Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.). Spanish Journal of Agricultural Research. 13(2):1-7. doi:10.5424/sjar/2015132-7094 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.5424/sjar/2015132-7094 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 290827 es_ES
dc.description.references Bertolini, E., García, J., Yuste, A., & Olmos, A. (2010). High prevalence of viruses in table grape from Spain detected by real-time RT-PCR. European Journal of Plant Pathology, 128(3), 283-287. doi:10.1007/s10658-010-9663-4 es_ES
dc.description.references Borroto-Fernandez, E. G., Sommerbauer, T., Popowich, E., Schartl, A., & Laimer, M. (2008). Somatic embryogenesis from anthers of the autochthonous Vitis vinifera cv. Domina leads to Arabis mosaic virus-free plants. European Journal of Plant Pathology, 124(1), 171-174. doi:10.1007/s10658-008-9404-0 es_ES
dc.description.references Bosch-Rododera A, 1999. Els noms de la fruita a l'Alguer: edició del registres d'estimes de fruita de la Ballaracería. Publicacions de l’Abadia de Montserrat, Barcelona, Spain. 384 pp. es_ES
dc.description.references Cheong EJ, Jeon AR, Kang JW, Mock R, Kinard G, Li R, 2014. In vitro elimination of Black raspberry necrosis virus from black raspberry (Rubus occidentalis). Hortic Sci 41: 95-99. es_ES
dc.description.references Chhabra, G., Chaudhary, D., Varma, M., Sainger, M., & Jaiwal, P. K. (2008). TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiology and Molecular Biology of Plants, 14(4), 347-353. doi:10.1007/s12298-008-0033-z es_ES
dc.description.references Côte, F. X., Teisson, C., & Perrier, X. (2001). Somaclonal variation rate evolution in plant tissue culture: Contribution to understanding through a statistical approach. In Vitro Cellular & Developmental Biology - Plant, 37(5), 539-542. doi:10.1007/s11627-001-0093-z es_ES
dc.description.references Dhekney SA, Li ZT, Compton ME, Gray DJ, 2009. Optimizing initiation and maintenance of Vitis embryogenic cultures. HortScience 44: 1400-1406. es_ES
dc.description.references Dickinson, N. (2013). Nature and farming: sustaining native biodiversity in agricultural landscapes. New Zealand Journal of Agricultural Research, 56(3), 245-246. doi:10.1080/00288233.2013.825872 es_ES
dc.description.references Duran-Vila N, Juárez J, Arregui JM, 1988. Production of viroid-free grapevines by shoot tip culture. Am J Enol Viticult 39: 217-220. es_ES
dc.description.references Faure, O., Dewitte, W., Nougarede, A., & Van Onckelen, H. (1998). Precociously germinating somatic embryos of Vitis vinifera have lower ABA and IAA levels than their germinating zygotic counterparts. Physiologia Plantarum, 102(4), 591-595. doi:10.1034/j.1399-3054.1998.1020414.x es_ES
dc.description.references Favà-Agud X, 2001. Diccionari dels noms de ceps i raïms: L'ampelonímia catalana. Institut d'Estudis Catalans, Barcelona, Spain. 185 pp. es_ES
dc.description.references Gambino, G., Bondaz, J., & Gribaudo, I. (2006). Detection and Elimination of Viruses in Callus, Somatic Embryos and Regenerated Plantlets of Grapevine. European Journal of Plant Pathology, 114(4), 397-404. doi:10.1007/s10658-006-0004-6 es_ES
dc.description.references Gambino, G., Di Matteo, D., & Gribaudo, I. (2008). Elimination of Grapevine fanleaf virus from three Vitis vinifera cultivars by somatic embryogenesis. European Journal of Plant Pathology, 123(1), 57-60. doi:10.1007/s10658-008-9342-x es_ES
dc.description.references Gambino, G., Navarro, B., Vallania, R., Gribaudo, I., & Di Serio, F. (2011). Somatic embryogenesis efficiently eliminates viroid infections from grapevines. European Journal of Plant Pathology, 130(4), 511-519. doi:10.1007/s10658-011-9770-x es_ES
dc.description.references García-Gracian MT, 1992. El raïm de taula. Conselleria d'Agricultura i Pesca de la Generalitat Valenciana, Valencia, Spain. 240 pp. es_ES
dc.description.references Gisbert, C., Prohens, J., & Nuez, F. (2006). Efficient regeneration in two potential new crops for subtropical climates, the scarlet(Solanum aethiopicum)and gboma(S. macrocarpon)eggplants. New Zealand Journal of Crop and Horticultural Science, 34(1), 55-62. doi:10.1080/01140671.2006.9514388 es_ES
dc.description.references Goebel-Tourand, I., Mauro, M.-C., Sossountzov, L., Miginiac, E., & Deloire, A. (1993). Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell, Tissue and Organ Culture, 33(1), 91-103. doi:10.1007/bf01997603 es_ES
dc.description.references Goussard PG, Wiid J, Kasdorf GGF, 1991. The effectiveness of in vitro somatic embryogenesis in eliminating fanleaf virus and leafroll associated viruses from grapevines. S Afr J Enol Vitic 12: 77-81. es_ES
dc.description.references Goussard PG, Wiid J, 1992. The elimination of fanleaf virus virus from grapevine using in vitro somatic embryogenesis combined with heat therapy. S Afr J Enol Vitic 13: 81-83. es_ES
dc.description.references Gribaudo I, Gambino G, Vallania R, 2004. Somatic embryogenesis from grapevine anthers: The optimal developmental stage for collecting explants. Am J Enol Vitic 55: 427-430. es_ES
dc.description.references Karvonen J, 2014. Vitis cv. Zilga is a vine for the northern temperate climate. Hortic Sci 41: 147-151. es_ES
dc.description.references Laimer M, Lemaire O, Herrbach E, Golschmidt V, Minafra A, Bianco P, Wetzel T, 2009. Resistance to viruses, phytoplasmas and their vectors in the grapevine in Europe: a review. J Plant Pathol 91: 7-23. es_ES
dc.description.references Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60(4), 197-214. doi:10.1007/bf02342540 es_ES
dc.description.references López-Fabuel, I., Wetzel, T., Bertolini, E., Bassler, A., Vidal, E., Torres, L. B., … Olmos, A. (2013). Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses. Journal of Virological Methods, 188(1-2), 21-24. doi:10.1016/j.jviromet.2012.11.034 es_ES
dc.description.references López-Pérez AJ, Carre-o J, Martinez-Cutillas A, Dabauza M, 2005. High embryogenic ability and plant regeneration of table grapevine (Vitis vinifera L.) induced by activated charcoal. Vitis 44: 79-85. es_ES
dc.description.references López-Pérez AJ, Carre-o J, Dabauza M, 2006. Somatic embryo germination and plant regeneration of three grapevine cvs: Effect of IAA, GA3 and embryo morphology. Vitis 45: 141-143. es_ES
dc.description.references Lloyd G, McCown B, 1980. Commercially feasible micropropagation of Mountain Laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30: 421-427. es_ES
dc.description.references Ma, G., Lü, J., da Silva, J. A. T., Zhang, X., & Zhao, J. (2010). Shoot organogenesis and somatic embryogenesis from leaf and shoot explants of Ochna integerrima (Lour). Plant Cell, Tissue and Organ Culture (PCTOC), 104(2), 157-162. doi:10.1007/s11240-010-9812-7 es_ES
dc.description.references Miguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. Journal of Experimental Botany, 62(11), 3713-3725. doi:10.1093/jxb/err155 es_ES
dc.description.references Newton DJ, Goussard PG, 1990. The ontogeny of somatic embryos from in vitro cultured grapevine anthers. S Afr J Enol Vitic 11: 70-81. es_ES
dc.description.references Nitsch, J. P., & Nitsch, C. (1969). Haploid Plants from Pollen Grains. Science, 163(3862), 85-87. doi:10.1126/science.163.3862.85 es_ES
dc.description.references Panattoni, A., Luvisi, A., & Triolo, E. (2013). Review. Elimination of viruses in plants: twenty years of progress. Spanish Journal of Agricultural Research, 11(1), 173. doi:10.5424/sjar/2013111-3201 es_ES
dc.description.references Parštein F, Sedlák J, Svobodová L, Polák J, Gadiou S, 2013. Results of in vitro chemotherapy of apple cv. Fragrance. Hortic Sci 40: 186-190. es_ES
dc.description.references Paul, S., Dam, A., Bhattacharyya, A., & Bandyopadhyay, T. K. (2010). An efficient regeneration system via direct and indirect somatic embryogenesis for the medicinal tree Murraya koenigii. Plant Cell, Tissue and Organ Culture (PCTOC), 105(2), 271-283. doi:10.1007/s11240-010-9864-8 es_ES
dc.description.references Popescu CF, Buciumeanu E, Visoiu E, 2003. Somatic embryogenesis a reliable method for Grapevine fleck virus-free regeneration. Proc 14th Meeting Int Council the Study of Virus and virus-like Diseases of the Grapevine, Bari (Italy), Sept 12-17. pp: 243. es_ES
dc.description.references Prado, M. J., Rodriguez, E., Rey, L., González, M. V., Santos, C., & Rey, M. (2010). Detection of somaclonal variants in somatic embryogenesis-regenerated plants of Vitis vinifera by flow cytometry and microsatellite markers. Plant Cell, Tissue and Organ Culture (PCTOC), 103(1), 49-59. doi:10.1007/s11240-010-9753-1 es_ES
dc.description.references RAJASEKARAN, K., & MULLINS, M. G. (1979). Embryos and Plantlets from Cultured Anthers of Hybrid Grapevines. Journal of Experimental Botany, 30(3), 399-407. doi:10.1093/jxb/30.3.399 es_ES
dc.description.references Sharma, S. K., Bryan, G. J., Winfield, M. O., & Millam, S. (2007). Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta, 226(6), 1449-1458. doi:10.1007/s00425-007-0583-2 es_ES
dc.description.references Shatnawi M, Anfoka G, Shibli R, Al-Mazra'awi M, Shahrour M, Arebiat A, 2011. Clonal propagation and cryogenic storage of virus-free grapevine (Vitis vinifera L.) via meristem culture. Turk J Agric For 35: 173-184. es_ES
dc.description.references Skiada, F. G., Maliogka, V. I., Katis, N. I., & Eleftheriou, E. P. (2012). Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two Vitis vinifera cultivars by in vitro chemotherapy. European Journal of Plant Pathology, 135(2), 407-414. doi:10.1007/s10658-012-0097-z es_ES
dc.description.references Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T. van de, Hornes, M., … Zabeau, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23(21), 4407-4414. doi:10.1093/nar/23.21.4407 es_ES
dc.description.references Youssef, S. A., Al-Dhaher, M. M. A., & Shalaby, A. A. (2009). Elimination of Grapevine fanleaf virus (GFLV) and Grapevine leaf roll-associated virus-1 (GLRaV-1) from Infected Grapevine Plants Using Meristem Tip Culture. International Journal of Virology, 5(2), 89-99. doi:10.3923/ijv.2009.89.99 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem