Mostrar el registro sencillo del ítem
dc.contributor.author | Defant, Andreas | es_ES |
dc.contributor.author | García, Domingo | es_ES |
dc.contributor.author | Maestre, Manuel | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2016-11-14T09:42:43Z | |
dc.date.available | 2016-11-14T09:42:43Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0208-6573 | |
dc.identifier.uri | http://hdl.handle.net/10251/73908 | |
dc.description.abstract | [EN] Each Dirichlet series D=∑∞n=1an1nsD=∑n=1∞an1ns, with variable s∈Cs∈C and coefficients an∈Can∈C, has a so called Bohr strip, the largest strip in CC on which DD converges absolutely but not uniformly. The classical Bohr-Bohnenblust-Hille theorem states that the width of the largest possible Bohr strip equals 1/21/2. Recently, this deep work of Bohr, Bohnenblust and Hille from the beginning of the last century was revisited by various authors. New methods from different fields of modern analysis (e.g. probability theory, number theory, functional and Fourier analysis) allow to improve the Bohr-Bohnenblust-Hille cycle of ideas, and to extend it to new settings, in particular to Dirichlet series which coefficients in Banach spaces. We survey on various aspects of these new developments. | es_ES |
dc.description.sponsorship | The authors were supported in part by MICINN and FEDER Project MTM2008-03211. The third author was also supported by Prometeo 2008/101 | |
dc.language | Inglés | es_ES |
dc.publisher | Adam Mickiewicz University The Faculty of Mathematics and Computer Science | |
dc.relation.ispartof | Functiones et Approximatio, Commentarii mathematici | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dirichlet series | es_ES |
dc.subject | Power series | es_ES |
dc.subject | Polynomials | es_ES |
dc.subject | Banach spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Bohr's strips for Dirichlet series in Banach spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.7169/facm/1308749122 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2008-03211/ES/GEOMETRIA Y DIFERENCIACION EN ESPACIOS DE BANACH. ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Defant, A.; García, D.; Maestre, M.; Sevilla Peris, P. (2011). Bohr's strips for Dirichlet series in Banach spaces. Functiones et Approximatio, Commentarii mathematici. 44(2):165-189. https://doi.org/10.7169/facm/1308749122 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.7169/facm/1308749122 | es_ES |
dc.description.upvformatpinicio | 165 | es_ES |
dc.description.upvformatpfin | 189 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 206150 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana |