- -

Bohr's strips for Dirichlet series in Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bohr's strips for Dirichlet series in Banach spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Defant, Andreas es_ES
dc.contributor.author García, Domingo es_ES
dc.contributor.author Maestre, Manuel es_ES
dc.contributor.author Sevilla Peris, Pablo es_ES
dc.date.accessioned 2016-11-14T09:42:43Z
dc.date.available 2016-11-14T09:42:43Z
dc.date.issued 2011
dc.identifier.issn 0208-6573
dc.identifier.uri http://hdl.handle.net/10251/73908
dc.description.abstract [EN] Each Dirichlet series D=∑∞n=1an1nsD=∑n=1∞an1ns, with variable s∈Cs∈C and coefficients an∈Can∈C, has a so called Bohr strip, the largest strip in CC on which DD converges absolutely but not uniformly. The classical Bohr-Bohnenblust-Hille theorem states that the width of the largest possible Bohr strip equals 1/21/2. Recently, this deep work of Bohr, Bohnenblust and Hille from the beginning of the last century was revisited by various authors. New methods from different fields of modern analysis (e.g. probability theory, number theory, functional and Fourier analysis) allow to improve the Bohr-Bohnenblust-Hille cycle of ideas, and to extend it to new settings, in particular to Dirichlet series which coefficients in Banach spaces. We survey on various aspects of these new developments. es_ES
dc.description.sponsorship The authors were supported in part by MICINN and FEDER Project MTM2008-03211. The third author was also supported by Prometeo 2008/101
dc.language Inglés es_ES
dc.publisher Adam Mickiewicz University The Faculty of Mathematics and Computer Science
dc.relation.ispartof Functiones et Approximatio, Commentarii mathematici es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dirichlet series es_ES
dc.subject Power series es_ES
dc.subject Polynomials es_ES
dc.subject Banach spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Bohr's strips for Dirichlet series in Banach spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.7169/facm/1308749122
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2008-03211/ES/GEOMETRIA Y DIFERENCIACION EN ESPACIOS DE BANACH. ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Defant, A.; García, D.; Maestre, M.; Sevilla Peris, P. (2011). Bohr's strips for Dirichlet series in Banach spaces. Functiones et Approximatio, Commentarii mathematici. 44(2):165-189. https://doi.org/10.7169/facm/1308749122 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.7169/facm/1308749122 es_ES
dc.description.upvformatpinicio 165 es_ES
dc.description.upvformatpfin 189 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 206150 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem