Mostrar el registro sencillo del ítem
dc.contributor.author | Ferrer, Jesús | es_ES |
dc.contributor.author | Kakol, Jerzy | es_ES |
dc.contributor.author | López Pellicer, Manuel | es_ES |
dc.contributor.author | Wójtowicz, Marek | es_ES |
dc.date.accessioned | 2016-11-14T11:06:42Z | |
dc.date.available | 2016-11-14T11:06:42Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0208-6573 | |
dc.identifier.uri | http://hdl.handle.net/10251/73925 | |
dc.description.abstract | [EN] Corson's example shows that there exists a Banach space EE which is not weakly normal but EE contains a closed subspace isomorphic to the Banach space C[0,1]C[0,1] and such that the quotient space E/C[0,1]E/C[0,1] is isomorphic to the weakly compactly generated Banach space c0[0,1]c0[0,1]. This applies to show the following two results: (i) The Lindelöf property is not a three-space property. (ii) The Lindelöf Σ-property is not a three-space property. In this note using the lifting property developed by Susanne Dierolf we present a very simple argument providing also (ii), see Theorem 1. This argument used in the proof applies also to show that under Continuum Hypothesis every infinite-dimensional topological vector space EE which contains a dense hyperplane admits a stronger vector topology υυ with the same topological dual and such that (E,υ)(E,υ) contains a dense non-Baire hyperplane. This partially answers a question of Saxon concerning Arias de Reyna-Valdivia-Saxon theorem. A Banach space EE has the Sobczyk Property if it contains an isomorphic copy of c0c0 and every such a copy is complemented in EE. The classical Sobczyk's theorem says that every separable Banach space has this property. We give an example of a C(K)C(K)-space EE and its subspace YY isometric to c0c0 such that E/YE/Y is isomorphic to c0(Γ)c0(Γ), with card(Γ)=2ℵ0card(Γ)=2ℵ0, yet YY is uncomplemented in EE. This complements Corson's example and shows that the Sobczyk Property (as well as the (WCG)-property, and the Separable Complementation Property) is not a~three-space property. In the last part we recall some facts (partially with a simpler presentation) concerning K-analytic, Lindelöf ΣΣ and analytic locally convex spaces. Additionally, a few remarks concerning weakly K-analytic spaces are include | es_ES |
dc.description.sponsorship | The first author has been partially supported by MEC and FEDER Project MTM2008-03211. The research for the second named author was (partially) supported by Ministry of Science and Higher Education, Poland, grant no. NN201 2740 33, and for the second and third named author by the project MTM2008 - 01502 of the Spanish Ministry of Science and Innovation. | |
dc.language | Inglés | es_ES |
dc.publisher | Adam Mickiewicz University The Faculty of Mathematics and Computer Science | |
dc.relation.ispartof | Functiones et Approximatio, Commentarii mathematici | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Lindelöf Σ-spaces | es_ES |
dc.subject | WCG-spaces | es_ES |
dc.subject | Banach spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On a three-space property for Lindelöf Sigma-spaces, (WCG)-spaces and the Sobczyk property | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.7169/facm/1308749133 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2008-03211/ES/GEOMETRIA Y DIFERENCIACION EN ESPACIOS DE BANACH. ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2008-01502/ES/ELEMENTOS DE TOPOLOGIA DESCRIPTIVA DE CONJUNTOS EN ANALISIS FUNCIONAL LINEAL/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Ferrer, J.; Kakol, J.; López Pellicer, M.; Wójtowicz, M. (2011). On a three-space property for Lindelöf Sigma-spaces, (WCG)-spaces and the Sobczyk property. Functiones et Approximatio, Commentarii mathematici. 44(2):289-306. https://doi.org/10.7169/facm/1308749133 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.7169/facm/1308749133 | es_ES |
dc.description.upvformatpinicio | 289 | es_ES |
dc.description.upvformatpfin | 306 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 212534 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.contributor.funder | Ministerio de Ciencia e Innovación |