Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez Perales, David | es_ES |
dc.contributor.author | Alemany, M.M. Eva | es_ES |
dc.date.accessioned | 2016-11-16T14:08:14Z | |
dc.date.available | 2016-11-16T14:08:14Z | |
dc.date.issued | 2016-07-13 | |
dc.identifier.issn | 2340-5317 | |
dc.identifier.uri | http://hdl.handle.net/10251/74217 | |
dc.description.abstract | [EN] It is known that capacity issues in tactical production plans in a hierarchical context are relevant since its inaccurate determination may lead to unrealistic or simply non-feasible plans at the operational level. Semi-continuous industrial processes, such as ceramic ones, often imply large setups and their consideration is crucial for accurate capacity estimation. However, in most of production planning models developed in a hierarchical context at this tactical (aggregated) level, setup changes are not explicitly considered. Their consideration includes not only decisions about lot sizing of production, but also allocation, known as Capacitated Lot Sizing and Loading Problem (CLSLP). However, CLSLP does not account for set-up continuity, specially important in contexts with lengthy and costly set-ups and where product families minimum run length are similar to planning periods. In this work, a mixed integer linear programming (MILP) model for a two stage ceramic firm which accounts for lot sizing and loading decisions including minimum lot-sizes and set-up continuity between two consecutive periods is proposed. Set-up continuity inclusion is modelled just considering which product families are produced at the beginning and at the end of each period of time, and not the complete sequence. The model is solved over a simplified two-stage real-case within a Spanish ceramic firm. Obtained results confirm its validity. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | International Journal of Production Management and Engineering | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Set-up continuity | es_ES |
dc.subject | Ceramic firm | es_ES |
dc.subject | Tactical planning | es_ES |
dc.subject | Mixed integer linear programming | es_ES |
dc.title | A Mathematical Programming Model for Tactical Planning with Set-up Continuity in a Two-stage Ceramic Firm | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2016-11-16T13:57:06Z | |
dc.identifier.doi | 10.4995/ijpme.2016.5209 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación en Gestión e Ingeniería de Producción - Centre d'Investigació en Gestió i Enginyeria de Producció | es_ES |
dc.description.bibliographicCitation | Pérez Perales, D.; Alemany, ME. (2016). A Mathematical Programming Model for Tactical Planning with Set-up Continuity in a Two-stage Ceramic Firm. International Journal of Production Management and Engineering. 4(2):53-64. https://doi.org/10.4995/ijpme.2016.5209 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ijpme.2016.5209 | es_ES |
dc.description.upvformatpinicio | 53 | es_ES |
dc.description.upvformatpfin | 64 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 2340-4876 |