- -

Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems

Mostrar el registro completo del ítem

Branco, RM.; Coelho, AS.; Mayerle, SF. (2016). Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems. International Journal of Production Management and Engineering. 4(2):75-85. https://doi.org/10.4995/ijpme.2016.5780

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/74220

Ficheros en el ítem

Metadatos del ítem

Título: Hybrid genetic algorithms: solutions in realistic dynamic and setup dependent job-shop scheduling problems
Autor: Branco, Rogério M. Coelho, Antônio S. Mayerle, Sérgio F.
Fecha difusión:
Resumen:
[EN] This paper discusses the application of heuristic-based evolutionary technique in search for solutions concerning the dynamic job-shop scheduling problems with dependent setup times and alternate routes. With a ...[+]
Palabras clave: Genetic algorithms , Dispatching rules , Realistic job-shop scheduling
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Production Management and Engineering. (issn: 2340-5317 ) (eissn: 2340-4876 )
DOI: 10.4995/ijpme.2016.5780
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ijpme.2016.5780
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem