Mostrar el registro sencillo del ítem
dc.contributor.author | Rosa Escutia, Álvaro | es_ES |
dc.contributor.author | Gutiérrez Campo, Ana María | es_ES |
dc.contributor.author | Brimont, Antoine Christian Jacques | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Sanchis Kilders, Pablo | es_ES |
dc.date.accessioned | 2016-11-18T12:00:55Z | |
dc.date.available | 2016-11-18T12:00:55Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/74354 | |
dc.description.abstract | Optical switches based on tunable multimode interference (MMI) couplers can simultaneously reduce the footprint and increase the tolerance against fabrication deviations. Here, a compact 2x2 silicon switch based on a thermo-optically tunable MMI structure with a footprint of only 0.005mm2 is proposed and demonstrated. The MMI structure has been optimized using a silica trench acting as a thermal isolator without introducing any substantial loss penalty or crosstalk degradation. Furthermore, the electrodes performance have significantly been improved via engineering the heater geometry and using two metallization steps. Thereby, a drastic power consumption reduction of around 90% has been demonstrated yielding to values as low as 24.9 mW. Furthermore, very fast switching times of only 1.19 μs have also been achieved. | es_ES |
dc.description.sponsorship | Financial support from LEOMIS TEC2012-38540 and PROMETEOII/2014/034 projects is acknowledged. Alvaro Rosa also acknowledges the Spanish Ministry of Economy and Competitiveness for funding his grant. The authors also would like to thank the Electronic Microscopy Department at UPV for taking the SEM images. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Switch | es_ES |
dc.subject | 2x2 | es_ES |
dc.subject | Tunable multimode interference | es_ES |
dc.subject | Thermo-optic effect | es_ES |
dc.subject | Efficient electrodes | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.24.000191 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-38540-C02-02/ES/DISPOSITIVOS DE CONMUTACION Y MODULACION ELECTRO-OPTICA CON FOTONICA DE SILICIO BASADA EN TECNOLOGIA CMOS PARA ENRUTADO INTRA-CHIP E INTERCONEXIONES OPTICAS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Rosa Escutia, Á.; Gutiérrez Campo, AM.; Brimont, ACJ.; Griol Barres, A.; Sanchis Kilders, P. (2016). High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes. Optics Express. 24(1):191-198. https://doi.org/10.1364/OE.24.000191 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.description.upvformatpinicio | 191 | es_ES |
dc.description.upvformatpfin | 198 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 299303 | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Subbaraman, H., Xu, X., Hosseini, A., Zhang, X., Zhang, Y., Kwong, D., & Chen, R. T. (2015). Recent advances in silicon-based passive and active optical interconnects. Optics Express, 23(3), 2487. doi:10.1364/oe.23.002487 | es_ES |
dc.description.references | Nikolova, D., Rumley, S., Calhoun, D., Li, Q., Hendry, R., Samadi, P., & Bergman, K. (2015). Scaling silicon photonic switch fabrics for data center interconnection networks. Optics Express, 23(2), 1159. doi:10.1364/oe.23.001159 | es_ES |
dc.description.references | Dong, P., Preble, S. F., & Lipson, M. (2007). All-optical compact silicon comb switch. Optics Express, 15(15), 9600. doi:10.1364/oe.15.009600 | es_ES |
dc.description.references | Biberman, A., Lira, H. L. R., Padmaraju, K., Ophir, N., Chan, J., Lipson, M., & Bergman, K. (2011). Broadband Silicon Photonic Electrooptic Switch for Photonic Interconnection Networks. IEEE Photonics Technology Letters, 23(8), 504-506. doi:10.1109/lpt.2011.2112763 | es_ES |
dc.description.references | Li, G., Zheng, X., Yao, J., Thacker, H., Shubin, I., Luo, Y., … Krishnamoorthy, A. V. (2011). 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. Optics Express, 19(21), 20435. doi:10.1364/oe.19.020435 | es_ES |
dc.description.references | Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., Delâge, A., … Cheben, P. (2009). Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17(13), 10457. doi:10.1364/oe.17.010457 | es_ES |
dc.description.references | Van Campenhout, J., Green, W. M., Assefa, S., & Vlasov, Y. A. (2009). Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Optics Express, 17(26), 24020. doi:10.1364/oe.17.024020 | es_ES |
dc.description.references | Dong, P., Liao, S., Liang, H., Shafiiha, R., Feng, D., Li, G., … Asghari, M. (2010). Submilliwatt, ultrafast and broadband electro-optic silicon switches. Optics Express, 18(24), 25225. doi:10.1364/oe.18.025225 | es_ES |
dc.description.references | Sun, P., & Reano, R. M. (2010). Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Optics Express, 18(8), 8406. doi:10.1364/oe.18.008406 | es_ES |
dc.description.references | Watts, M. R., Sun, J., DeRose, C., Trotter, D. C., Young, R. W., & Nielson, G. N. (2013). Adiabatic thermo-optic Mach–Zehnder switch. Optics Letters, 38(5), 733. doi:10.1364/ol.38.000733 | es_ES |
dc.description.references | Harris, N. C., Ma, Y., Mower, J., Baehr-Jones, T., Englund, D., Hochberg, M., & Galland, C. (2014). Efficient, compact and low loss thermo-optic phase shifter in silicon. Optics Express, 22(9), 10487. doi:10.1364/oe.22.010487 | es_ES |
dc.description.references | Suzuki, K., Cong, G., Tanizawa, K., Kim, S.-H., Ikeda, K., Namiki, S., & Kawashima, H. (2015). Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Optics Express, 23(7), 9086. doi:10.1364/oe.23.009086 | es_ES |
dc.description.references | Sanchez, L., Griol, A., Lechago, S., Brimont, A., & Sanchis, P. (2015). Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach–Zehnder Interferometer. IEEE Photonics Journal, 7(2), 1-8. doi:10.1109/jphot.2015.2407317 | es_ES |
dc.description.references | Besse, P. A., Bachmann, M., Melchior, H., Soldano, L. B., & Smit, M. K. (1994). Optical bandwidth and fabrication tolerances of multimode interference couplers. Journal of Lightwave Technology, 12(6), 1004-1009. doi:10.1109/50.296191 | es_ES |
dc.description.references | Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 | es_ES |
dc.description.references | Leuthold, J., & Joyner, C. W. (2001). Multimode interference couplers with tunable power splitting ratios. Journal of Lightwave Technology, 19(5), 700-707. doi:10.1109/50.923483 | es_ES |
dc.description.references | Fan Wang, Jianyi Yang, Limei Chen, Xiaoqing Jiang, & Minghua Wang. (2006). Optical switch based on multimode interference coupler. IEEE Photonics Technology Letters, 18(2), 421-423. doi:10.1109/lpt.2005.863201 | es_ES |