- -

Propuesta didáctica para modelizar evapotranspiración de referencia con redes neuronales artificiales en el aula.

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Propuesta didáctica para modelizar evapotranspiración de referencia con redes neuronales artificiales en el aula.

Show full item record

Martí, P.; Pulido Calvo, I.; Gutiérrez Estrada, JC. (2015). Propuesta didáctica para modelizar evapotranspiración de referencia con redes neuronales artificiales en el aula. Modelling in Science Education and Learning. 8(2):27-36. doi:10.4995/msel.2015.3348

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/74433

Files in this item

Item Metadata

Title: Propuesta didáctica para modelizar evapotranspiración de referencia con redes neuronales artificiales en el aula.
Secondary Title: Teaching methodology for modeling reference evapotranspiration with artificial neural networks
Author: Martí, Pau Pulido Calvo, Inmaculada Gutiérrez Estrada, Juan Carlos
Issued date:
Abstract:
[EN] Artificial neural networks are a robust alternative to conventional models for estimating different targets in irrigation engineering, among others, reference evapotranspiration, a key variable for estimating crop water ...[+]


[ES] Las redes neuronales artificiales constituyen una buena alternativa a los modelos convencionales para estimar diferentes variables en ingeniería del riego, entre ellas la evapotranspiración de referencia, clave en la ...[+]
Subjects: Reference Evapotranspiration , Irrigation , Artificial neural networks , MatLab , Evapotranspiración de referencia , Riego , Redes neuronales artificiales
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Modelling in Science Education and Learning. (eissn: 1988-3145 )
DOI: 10.4995/msel.2015.3348
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/msel.2015.3348
Type: Artículo

References

Allen, R.G., Pereira, L.S., Raes, D., & Smith, M., (1998). Crop evapotranspiration. Guidelines for computing water requirements. FAO Irrigation and Drainage, paper 56. FAO, Roma.

Bishop, C.M. (Ed.), (1995). Neural Networks for Pattern Recognition. Oxford University Press, Oxford.

George H. Hargreaves, & Zohrab A. Samani. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96-99. doi:10.13031/2013.26773 [+]
Allen, R.G., Pereira, L.S., Raes, D., & Smith, M., (1998). Crop evapotranspiration. Guidelines for computing water requirements. FAO Irrigation and Drainage, paper 56. FAO, Roma.

Bishop, C.M. (Ed.), (1995). Neural Networks for Pattern Recognition. Oxford University Press, Oxford.

George H. Hargreaves, & Zohrab A. Samani. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96-99. doi:10.13031/2013.26773

Haykin, S. (Ed.), (1999). Neural Networks. A comprehensive foundation. Prentice Hall International Inc., New Jersey.

Zanetti, S. S., Sousa, E. F., Oliveira, V. P., Almeida, F. T., & Bernardo, S. (2007). Estimating Evapotranspiration Using Artificial Neural Network and Minimum Climatological Data. Journal of Irrigation and Drainage Engineering, 133(2), 83-89. doi:10.1061/(asce)0733-9437(2007)133:2(83)

[-]

This item appears in the following Collection(s)

Show full item record