- -

The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zarzoso Muñoz, Manuel es_ES
dc.contributor.author Such Miquel, Luis es_ES
dc.contributor.author Parra Giraldo, Germán es_ES
dc.contributor.author Brines Ferrando, Laia es_ES
dc.contributor.author Such, L. es_ES
dc.contributor.author Chorro, F.J. es_ES
dc.contributor.author Guerrero, Juan es_ES
dc.contributor.author Guill Ibáñez, Antonio es_ES
dc.contributor.author O'Connor, J.E. es_ES
dc.contributor.author Alberola, A. es_ES
dc.date.accessioned 2016-11-24T16:36:34Z
dc.date.available 2016-11-24T16:36:34Z
dc.date.issued 2012-06
dc.identifier.issn 1439-6319
dc.identifier.uri http://hdl.handle.net/10251/74587
dc.description.abstract The purpose of this study is to test the role that parasympathetic postganglionic neurons could play on the adaptive electrophysiological changes produced by physical training on intrinsic myocardial automatism, conduction and refractoriness. Trained rabbits were submitted to aphysical training protocol on treadmill during 6 weeks. The electrophysiological study was performed in an isolated heart preparation. The investigated myocardial properties were: (a) sinus automatism, (b) atrioventricular and ventriculoatrial conduction, (c) atrial, conduction system and ventricular refractoriness. The parameters to study the refractoriness were obtained by means of extrastimulus test at four diVerent pacing cycle lengths (10% shorter than spontaneous sinus cycle length, 250, 200 and 150 ms) and (d) mean dominant frequency (DF) of the induced ventricular Wbrillation (VF), using a spectral method. The electrophysiological protocol was performed before and during continuous atropine administration (1 ¿M), in order to block cholinergic receptors. Cholinergic receptor blockade did not modify either the increase in sinus cycle length, atrioventricular conduction and refractoriness (left ventricular and atrioventricular conduction system functional refractory periods) or the decrease of DF of VF. These Wndings reveal that the myocardial electrophysiological modiWcations produced by physical training are not mediated by intrinsic cardiac parasympathetic activity. es_ES
dc.description.sponsorship The authors thank Carmen Rams, Ana Diaz, Pilar Navarro and Cesar Avellaneda for their excellent technical assistance. This work has been supported by grants from the Spanish Ministry of Education and Science (DEP2007-73234-C03-01) and Generalitat Valenciana (PROMETEO 2010/093). M Zarzoso was supported by a research scholarship from Generalitat Valenciana (BFPI/2008/003). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof European Journal of Applied Physiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Physical training es_ES
dc.subject Parasympatheticpostganglionic neurons es_ES
dc.subject Heart electrophysiology es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00421-011-2189-4
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DEP2007-73234-C03-01/ES/MODIFICACIONES ELECTROFISIOLOGICAS PRODUCIDAS POR EL EJERCICIO FISICO CRONICO: INFLUENCIA DEL SISTEMA NERVIOSO CARDIACO Y DEL ESTRES OXIDATIVO MITOCONDRIAL./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F093/ES/Análisis de los efectos de las modificaciones electrofisiológicas sobre los procesos fibrilatorios/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BFPI%2F2008%2F003/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Zarzoso Muñoz, M.; Such Miquel, L.; Parra Giraldo, G.; Brines Ferrando, L.; Such, L.; Chorro, F.; Guerrero, J.... (2012). The training-induced changes on automatism, conduction and myocardial refractoriness are not mediated by parasympathetic postganglionic neurons activity. European Journal of Applied Physiology. 112(6):2185-2193. https://doi.org/10.1007/s00421-011-2189-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00421-011-2189-4 es_ES
dc.description.upvformatpinicio 2185 es_ES
dc.description.upvformatpfin 2193 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 112 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 236615 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Armour JA, Hopkins DA (1990a) Activity of in vivo canine ventricular neurons. Am J Physiol Heart Circ Physiol 258:H326–H336. doi: 10.1152/ajpregu.00183.2004 es_ES
dc.description.references Armour JA, Hopkins DA (1990b) Activity of canine in situ left atrial ganglion neurons. Am J Physiol Heart Circ Physiol 259:H1207–H1215 es_ES
dc.description.references Armour JA (2004) Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol 287:R262–R271 es_ES
dc.description.references Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247:289–298 es_ES
dc.description.references Bedford TG, Tipton CM (1987) Exercise training and the arterial baroreflex. J Appl Physiol 63:1926–1932 es_ES
dc.description.references Bonaduce D, Petretta M, Cavallaro V, Apicella C, Ianniciello A, Romano M, Breglio R, Marciano F (1998) Intensive training and cardiac autonomic control in high level athletes. Med Sci Sports Exerc 30:691–696 es_ES
dc.description.references Brack KE, Coote JH, Ng GA (2011) Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc Res 91:437–446. doi: 10.1093/cvr/cvr105 es_ES
dc.description.references Brorson L, Conradson TB, Olsson B, Varnauskas E (1976) Right atrial monophasic action potential and effective refractory periods in relation to physical training and maximal heart rate. Cardiovasc Res 10:160–168 es_ES
dc.description.references Carmeliet E, Mubagwa K (1998) Antiarrhythmic drugs and cardiac ion channels: mechanisms of action. Prog Biophys Mol Biol 70:1–72 es_ES
dc.description.references Chorro FJ, Cánoves J, Guerrero J, Mainar L, Sanchis J, Such L, López-Merino V (2000) Alteration of ventricular fibrillation by flecainide, verapamil, and sotalol: an experimental study. Circulation 101:1606–1615 es_ES
dc.description.references Di Carlo SE, Bishop VS (1990) Exercise training enhances cardiac afferent inhibition of baroreflex function. Am J Physiol 258:212–220 es_ES
dc.description.references Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA (1988) Activity of in vivo canine cardiac plexus neurons. Am J Physiol Heart Circ Physiol 255:H789–H800 es_ES
dc.description.references Gao L, Wang W, Liu D, Zucker IH (2007) Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. Circulation 115:3095–3102. doi: 10.1161/CIRCULATIONAHA.106.677989 es_ES
dc.description.references Gaustad SE, Rolim N, Wisløff U (2010) A valid and reproducible protocol for testing maximal oxygen uptake in rabbits. Eur J Cardiovasc Prev Rehabil 17:83–88. doi: 10.1097/HJR.0b013e32833090c4 es_ES
dc.description.references Gómez-Cabrera MC, Borrás C, Pallardó FV, Sastre J, Ji LL, Viña J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120. doi: 10.1113/jphysiol.2004.080564 es_ES
dc.description.references Gray AL, Johnson TA, Ardell JL, Massari VJ (2004) Parasympathetic control of the heart II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol 96:2273–2278. doi: 10.1152/japplphysiol es_ES
dc.description.references Hamilton KL, Powers SK, Sugiura T, Kim S, Lennon S, Tumer N, Mehta JL (2001) Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins. Am J Physiol Heart Circ Physiol 281:1346–1352 es_ES
dc.description.references Inoue H, Zipes DP (1987) Changes in atrial and ventricular refractoriness and atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length. Circ Res 60:942–951 es_ES
dc.description.references Jew KN, Olsson MC, Mokelke EA, Palmer BM, Moore RL (2001) Endurance training alters outward K+ current characteristics in rat cardiocytes. J Appl Physiol 90:1327–1333 es_ES
dc.description.references Johnson TA, Gray AL, Lauenstein JM, Newton SS, Massari VJ (2004) Parasympathetic control of the heart I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol 96:2265–2272. doi: 10.1152/japplphysiol.00620.2003 es_ES
dc.description.references Katona PG, McLean M, Dighton DH, Guz A (1982) Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol 52:1652–1657 es_ES
dc.description.references Lewis SF, Nylander E, Gad P, Areskog N (1980) Non-autonomic component in bradycardia of endurance trained men at rest and during exercise. Acta Physiol Scand 109:297–305 es_ES
dc.description.references Litovsky SH, Antzelevitch C (1990) Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res 67:615–627 es_ES
dc.description.references Löffelholz K (1981) Release of acetylcholine in the isolated heart. Am J Physiol 240(4):H431–H440 es_ES
dc.description.references Lopatin AN, Nichols CG (2001) Inward rectifiers in the heart: an update on I(K1). J Mol Cell Cardiol 33:625–638. doi: 10.1006/jmcc.2001.1344 es_ES
dc.description.references Mace LC, Palmer BM, Brown DA, Jew KN, Lynch JM, Glunt JM, Parsons TA, Cheung JY, Moore RL (2003) Influence of age and run training on cardiac Na+/Ca2+ exchange. J Appl Physiol 95:1994–2003. doi: 10.1152/japplphysiol.00551.2003 es_ES
dc.description.references Martins JB, Zipes DP (1980) Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res 46:100–110 es_ES
dc.description.references Mezzani A, Giovannini T, Michelucci A, Padeletti L, Resina A, Cupelli V, Musante R (1990) Effects of training on the electrophysiologic properties of atrium and accessory pathway in athletes with Wolff–Parkinson–White syndrome. Cardiology 77:295–302 es_ES
dc.description.references Mokelke EA, Palmer BM, Cheung JY, Moore RL (1997) Endurance training does not affect intrinsic calcium current characteristics in rat myocardium. Am J Physiol Heart Circ Physiol 273:H1193–H1197 es_ES
dc.description.references Mont L, Elosua R, Brugada J (2009) Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter. Europace 11:11–17. doi: 10.1093/europace/eun289 es_ES
dc.description.references Moore RL, Korzick DH (1995) Cellular adaptations of the myocardium to chronic exercise. Prog Cardiovasc Dis 37:371–396 es_ES
dc.description.references Negrao CE, Moreira ED, Santos MC, Farah VM, Krieger EM (1992) Vagal function impairment after exercise training. J Appl Physiol 72:1749–1753 es_ES
dc.description.references Ng GA, Brack KE, Coote JH (2001) Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart—a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol 86:319–329 es_ES
dc.description.references Nylander E, Sigvardsson K, Kilbom A (1982) Training-induced bradycardia and intrinsic heart rate in rats. Eur J Appl Physiol Occup Physiol 48:189–199 es_ES
dc.description.references Panfilov AV (2006) Is heart size a factor in ventricular fibrillation? Or how close are rabbit and human hearts? Heart Rhythm 3:862–864. doi: 10.1016/j.hrthm.2005.12.022 es_ES
dc.description.references Papka RE (1976) Studies of cardiac ganglia in pre- and postnatal rabbits. Cell Tissue Res 175:17–35 es_ES
dc.description.references Pardini BJ, Patel KP, Schmid PG, Lund DD (1987) Location, distribution and projections of intracardiac ganglion cells in the rat. J Auton Nerv Syst 20:91–101 es_ES
dc.description.references Scott AS, Eberhard A, Ofir D, Benchetrit G, Dinh TP, Calabrese P, Lesiuk V, Perrault H (2004) Enhanced cardiac vagal efferent activity does not explain training-induced bradycardia. Auton Neurosci 112:60–68. doi: 10.1016/j.autneu.2004.04.006 es_ES
dc.description.references Seals DR, Chase PB (1989) Influence of physical training on HR variability and baroreflex circulatory control. J Appl Physiol 66:1886–1895 es_ES
dc.description.references Shi X, Stevens GHJ, Foresman BH, Stern SA, Raven PB (1995) Autonomic nervous system control of the heart: endurance exercise training. Med Sci Sports Exerc 27:1406–1413 es_ES
dc.description.references Snyders DJ (1999) Structure and function of cardiac potassium channels. Cardiovasc Res 42:377–390 es_ES
dc.description.references Stein R, Moraes RS, Cavalcanti AV, Ferlin EL, Zimerman LI, Ribeiro JP (2000) Atrial automaticity and atrioventricular conduction in athletes: contribution of autonomic regulation. Eur J Appl Physiol 82:155–157 es_ES
dc.description.references Stein R, Moraes RS, Cavalcanti AV, Ferlin EL, Zimerman LI, Ribeiro JP (2002) Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J Am Coll Cardiol 39:1033–1038 es_ES
dc.description.references Stones R, Billeter R, Zhang H, Harrison S, White E (2009) The role of transient outward K+ current in electrical remodelling induced by voluntary exercise in female rat hearts. Basic Res Cardiol 104:643–652. doi: 10.1007/s00395-009-0030-6 es_ES
dc.description.references Such L, Rodríguez A, Alberola A, López L, Ruiz R, Artal L, Pons I, Pons ML, García C, Chorro FJ (2002) Intrinsic changes on automatism, conduction and refractoriness by exercise in insolated rabbit heart. J Appl Physiol 92:225–229. doi: 10.1111/j.1748-1716.2008.01851.x es_ES
dc.description.references Such L, Alberola AM, Such-Miquel L, López L, Trapero I, Pelechano F, Gómez-Cabrera MC, Tormos A, Millet J, Chorro FJ (2008) Effects of chronic exercise on myocardial refractoriness: a study on isolated rabbit heart. Acta Physiol 193:331–339 es_ES
dc.description.references Vigmond EJ, Tsoi V, Kuo S, Arevalo H, Kneller J, Nattel S, Trayanova N (2004) The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm 1:334–344. doi: 10.1016/j.hrthm.2004.03.077 es_ES
dc.description.references Zipes DP, Mihalick MJ, Robbins GT (1974) Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovasc Res 8:647–655 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem