- -

Dynamically tunable transformation thermodynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamically tunable transformation thermodynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Meca, Carlos es_ES
dc.contributor.author Barceló, Carlos es_ES
dc.date.accessioned 2016-11-29T12:00:03Z
dc.date.available 2016-11-29T12:00:03Z
dc.date.issued 2016-04
dc.identifier.issn 2040-8978
dc.identifier.uri http://hdl.handle.net/10251/74749
dc.description.abstract Recently, the introduction of transformation thermodynamics has provided a way to design thermal media that alter the flow of heat according to any spatial deformation, enabling the construction of novel devices such as thermal cloaks or concentrators. However, in its current version, this technique only allows static deformations of space. Here, we develop a space-time theory of transformation thermodynamics that incorporates the possibility of performing time-varying deformations. This extra freedom greatly widens the range of achievable effects, providing an additional degree of control for heat management applications. As an example, we design a reconfigurable thermal cloak that can be opened and closed dynamically, therefore being able to gradually adjust the temperature distribution of a given region. es_ES
dc.description.sponsorship C G-M acknowledges support from Generalitat Valenciana through the VALi+d postdoctoral program (exp APOSTD/2014/044). en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Optics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Transformation thermodynamics es_ES
dc.subject Cloaking es_ES
dc.subject Metamaterials es_ES
dc.title Dynamically tunable transformation thermodynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/2040-8978/18/4/044026
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F044/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation García Meca, C.; Barceló, C. (2016). Dynamically tunable transformation thermodynamics. Journal of Optics. 18(4):044026-1-044026-5. https://doi.org/10.1088/2040-8978/18/4/044026 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/2040-8978/18/4/044026 es_ES
dc.description.upvformatpinicio 044026-1 es_ES
dc.description.upvformatpfin 044026-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 299962 es_ES
dc.identifier.eissn 2040-8986
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Guenneau, S., Amra, C., & Veynante, D. (2012). Transformation thermodynamics: cloaking and concentrating heat flux. Optics Express, 20(7), 8207. doi:10.1364/oe.20.008207 es_ES
dc.description.references Schittny, R., Kadic, M., Guenneau, S., & Wegener, M. (2013). Experiments on Transformation Thermodynamics: Molding the Flow of Heat. Physical Review Letters, 110(19). doi:10.1103/physrevlett.110.195901 es_ES
dc.description.references McCall, M. W., Favaro, A., Kinsler, P., & Boardman, A. (2011). A spacetime cloak, or a history editor. Journal of Optics, 13(2), 029501-029501. doi:10.1088/2040-8978/13/2/029501 es_ES
dc.description.references Cummer, S. A., & Thompson, R. T. (2010). Frequency conversion by exploiting time in transformation optics. Journal of Optics, 13(2), 024007. doi:10.1088/2040-8978/13/2/024007 es_ES
dc.description.references García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 3(1). doi:10.1038/srep02009 es_ES
dc.description.references García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2014). Space–time transformation acoustics. Wave Motion, 51(5), 785-797. doi:10.1016/j.wavemoti.2014.01.008 es_ES
dc.description.references Kinsler, P., & McCall, M. W. (2014). Transformation devices: Event carpets in space and space-time. Physical Review A, 89(6). doi:10.1103/physreva.89.063818 es_ES
dc.description.references Kinsler, P., & McCall, M. W. (2013). Cloaks, editors, and bubbles: applications of spacetime transformation theory. Annalen der Physik, 526(1-2), 51-62. doi:10.1002/andp.201300164 es_ES
dc.description.references Leonhardt, U., & Philbin, T. G. (2006). General relativity in electrical engineering. New Journal of Physics, 8(10), 247-247. doi:10.1088/1367-2630/8/10/247 es_ES
dc.description.references Guenneau, S., & Puvirajesinghe, T. M. (2013). Fick’s second law transformed: one path to cloaking in mass diffusion. Journal of The Royal Society Interface, 10(83), 20130106. doi:10.1098/rsif.2013.0106 es_ES
dc.description.references Guenneau, S., Petiteau, D., Zerrad, M., Amra, C., & Puvirajesinghe, T. (2015). Transformed Fourier and Fick equations for the control of heat and mass diffusion. AIP Advances, 5(5), 053404. doi:10.1063/1.4917492 es_ES
dc.description.references García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2014). Analogue transformation acoustics and the compression of spacetime. Photonics and Nanostructures - Fundamentals and Applications, 12(4), 312-318. doi:10.1016/j.photonics.2014.05.001 es_ES
dc.description.references Schittny, R., Kadic, M., Buckmann, T., & Wegener, M. (2014). Invisibility cloaking in a diffusive light scattering medium. Science, 345(6195), 427-429. doi:10.1126/science.1254524 es_ES
dc.description.references Chester, M. (1963). Second Sound in Solids. Physical Review, 131(5), 2013-2015. doi:10.1103/physrev.131.2013 es_ES
dc.description.references Ali, Y. M., & Zhang, L. C. (2005). Relativistic heat conduction. International Journal of Heat and Mass Transfer, 48(12), 2397-2406. doi:10.1016/j.ijheatmasstransfer.2005.02.003 es_ES
dc.description.references López Molina, J. A., Rivera, M. J., & Berjano, E. (2014). Fourier, hyperbolic and relativistic heat transfer equations: a comparative analytical study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2172), 20140547. doi:10.1098/rspa.2014.0547 es_ES
dc.description.references Christov, C. I., & Jordan, P. M. (2005). Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media. Physical Review Letters, 94(15). doi:10.1103/physrevlett.94.154301 es_ES
dc.description.references Cho, J., Losego, M. D., Zhang, H. G., Kim, H., Zuo, J., Petrov, I., … Braun, P. V. (2014). Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nature Communications, 5(1). doi:10.1038/ncomms5035 es_ES
dc.description.references Ihlefeld, J. F., Foley, B. M., Scrymgeour, D. A., Michael, J. R., McKenzie, B. B., Medlin, D. L., … Hopkins, P. E. (2015). Room-Temperature Voltage Tunable Phonon Thermal Conductivity via Reconfigurable Interfaces in Ferroelectric Thin Films. Nano Letters, 15(3), 1791-1795. doi:10.1021/nl504505t es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem