- -

Development of non-reflecting boundary condition for application in 3D computational fluid dynamics codes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of non-reflecting boundary condition for application in 3D computational fluid dynamics codes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Fajardo, Pablo es_ES
dc.contributor.author Gil Megías, Antonio es_ES
dc.contributor.author Navarro García, Roberto es_ES
dc.date.accessioned 2016-11-30T17:16:45Z
dc.date.available 2016-11-30T17:16:45Z
dc.date.issued 2012-09
dc.identifier.issn 1994-2060
dc.identifier.uri http://hdl.handle.net/10251/74820
dc.description This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final version of the article as published in the Engineering applications of computational fluid mechanics, 2012 © Taylor & Francis, available online at: http://doi.org/ 10.1080/19942060.2012.11015434
dc.description.abstract [EN] Numerical computations are commonly used for better understanding the unsteady processes in internal combustion engine components and their acoustic behavior. The acoustic characterization of a system requires that reflections from duct terminations are avoided, which is achieved either by using highly dissipative terminations or, when an impulsive excitation is used, by placing long ducts between the system under study and the duct ends. In the latter case, the simulation of such a procedure would require a large computational domain with the associated high computational cost, unless non-reflecting boundary conditions are used. In this paper, first the different non-reflecting boundary conditions available in ANSYS-FLUENT are evaluated. Then, the development and implementation of an anechoic termination in a 3D-CFD code is presented. The performance of the new implementation is first validated in the classic Sod's shock tube problem, and then checked against numerical and experimental results of the flow and acoustic fields in automotive exhaust mufflers. The results obtained compare favorably with those from the conventional CFD approach and experiments, while the computational cost is significantly reduced. es_ES
dc.description.sponsorship This work has been partially supported by Ministerio de Ciencia e Innovacion through grant No. DPI2009-14290. The authors wish to thank Dr. David R. Perry for his kind assistance in manuscript editing.
dc.language Inglés es_ES
dc.publisher Taylor & Francis Group es_ES
dc.relation.ispartof Engineering Applications of Computational Fluid Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Non-reflecting boundary condition es_ES
dc.subject CFD simulation es_ES
dc.subject Method of characteristics es_ES
dc.subject Anechoic end es_ES
dc.subject Acoustic response es_ES
dc.subject Exhaust muffler es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Development of non-reflecting boundary condition for application in 3D computational fluid dynamics codes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/19942060.2012.11015434
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-14290/ES/Herramientas Experimentales Y Computacionales Para El Silenciamiento De Plantas De Potencia Basadas En Turbinas De Gas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Fajardo, P.; Gil Megías, A.; Navarro García, R. (2012). Development of non-reflecting boundary condition for application in 3D computational fluid dynamics codes. Engineering Applications of Computational Fluid Mechanics. 6(3):447-460. https://doi.org/10.1080/19942060.2012.11015434 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/19942060.2012.11015434 es_ES
dc.description.upvformatpinicio 447 es_ES
dc.description.upvformatpfin 460 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 226524 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references ANSYS Inc. (2009). Ansys Fluent 12.0 User’s Guide. Canonsburg, PA: ANSYS Inc. es_ES
dc.description.references Benson RS (1982).The Thermodynamics and Gas Dynamics of Internal Combustion Engines. Volume 1, Oxford: Oxford University Press. es_ES
dc.description.references Luján JM, Bermúdez V, Serrano JR, Cervelló C (2002). Test bench for turbocharger groups characterization.SAE Paper2002–01-0163. es_ES
dc.description.references Munjal ML (1987).Acoustics of Ducts and Mufflers. New York: Willey. es_ES
dc.description.references Onorati A, Montenegro G, D’Errico G (2006). Prediction of the attenuation characteristics of IC engine silencers by 1-D and multi-D simulation models.SAE Paper2006–01-1541. es_ES
dc.description.references Patil AR, Sajanpawar PR, Masurekar VV (1996) Acoustic three dimensional finite element analysis of a muffler.SAE Paper960189. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem