- -

Reversible Covalent Immobilization of Cinnamaldehyde on Chitosan Films via Schiff Base Formation and Their Application in Active Food Packaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reversible Covalent Immobilization of Cinnamaldehyde on Chitosan Films via Schiff Base Formation and Their Application in Active Food Packaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Higueras-Contreras, Laura es_ES
dc.contributor.author Lopez-Carballo, Gracia es_ES
dc.contributor.author Gavara Clemente, Rafael es_ES
dc.contributor.author Hernández-Muñoz , Pilar es_ES
dc.date.accessioned 2016-12-14T08:19:33Z
dc.date.available 2016-12-14T08:19:33Z
dc.date.issued 2015-03
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/75192
dc.description.abstract [EN] In this work, cinnamaldehyde was reversibly anchored to chitosan films via imino-covalent bonding. The Schiff base was synthesized in solid phase employing neutralized chitosan films immersed in acidified 95 % (v/v) ethanolic solution in which the aldehyde was dissolved. The substitution degree (%) of cinnamaldehyde to the amine group was close to 70 %. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analysis revealed the formation of the chitosan-cinnamaldehyde Schiff base. The hydrolysis of the imino bond and subsequent release of cinnamaldehyde were studied after the films had been subjected to different combinations of temperature/time treatments simulating food preservation methods. The amount of aldehyde that remained covalently attached to the films was monitored by ATR-FTIR, and the substitution degree was determined by elemental analysis. Surface contact angle and colour parameters of cinnamaldehyde-imine-chitosan films and these films subjected to different treatments were also evaluated. The antimicrobial properties of chitosan-Schiff base films were tested in vitro against Staphylococcus aureus and Escherichia coli and in milk inoculated with Listeria monocytogenes. The antimicrobial activity varied depending on the treatment applied and consequently the degree of imino bond hydrolysis achieved and cinnamaldehyde released. Films of Schiff base-chitosan derivative subjected to different time/temperature treatments inhibited the growth of L. monocytogenes for 12 days under refrigeration conditions, which may extend the microbiological shelf life of such products. Sensory analysis of milk in contact with the films showed that a cinnamon smell does not cause any rejection among potential consumers. These novel films could be used in the design of antimicrobial food packaging and in various other technological areas where sustained-release systems are required es_ES
dc.description.sponsorship The authors wish to thank the financial support provided by the Spanish Ministry of Science and Innovation (project AGL2012-39920-C03-01) and Spanish Research Council (CSIC, JAE-Predoc L.H. fellowship).
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chitosan es_ES
dc.subject Cinnamaldehyde es_ES
dc.subject Schiff base es_ES
dc.subject Hydrolysis es_ES
dc.subject Release es_ES
dc.subject Antimicrobial films es_ES
dc.subject Antimicrobial active packaging es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Reversible Covalent Immobilization of Cinnamaldehyde on Chitosan Films via Schiff Base Formation and Their Application in Active Food Packaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-014-1421-8
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-39920-C03-01/ES/NUEVOS SISTEMAS POLIMERICOS ACTIVOS PARA EL ENVASADO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIOLOGICO Y OXIDATIVO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Higueras-Contreras, L.; Lopez-Carballo, G.; Gavara Clemente, R.; Hernández-Muñoz, P. (2015). Reversible Covalent Immobilization of Cinnamaldehyde on Chitosan Films via Schiff Base Formation and Their Application in Active Food Packaging. Food and Bioprocess Technology. 8(3):526-538. https://doi.org/10.1007/s11947-014-1421-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s11947-014-1421-8 es_ES
dc.description.upvformatpinicio 526 es_ES
dc.description.upvformatpfin 538 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 296839 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Abreu, F. O., Oliveira, E. F., Paula, H. C., & de Paula, R. (2012). Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate Polymers, 89(4), 1277–1282. es_ES
dc.description.references Balaguer, M. P., Gómez-Estaca, J., Gavara, R., & Hernández-Muñoz, P. (2011a). Biochemical properties of bioplastics made from wheat gliadins cross-linked with cinnamaldehyde. Journal of Agricultural and Food Chemistry, 59(24), 13212–13220. es_ES
dc.description.references Balaguer, M. P., Gómez-Estaca, J., Gavara, R., & Hernández-Muñoz, P. (2011b). Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. Journal of Agricultural and Food Chemistry, 59(12), 6689–6695. es_ES
dc.description.references Belletti, N., Lanciotti, R., Patrignani, F., & Gardini, F. (2008). Antimicrobial efficacy of citron essential oil on spoilage and pathogenic microorganisms in fruit-based salads. Journal of Food Science, 73(7), M331–M338. es_ES
dc.description.references Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. es_ES
dc.description.references Cocchiara, J., Lalko, J., Lapczynski, A., Letizia, C. S., & Api, A. M. (2005). Fragrance material review on cinnamaldehyde. Food and Chemical Toxicology, 43(6), 867–923. es_ES
dc.description.references Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., & Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. Journal of Food Science, 67(3), 1162–1169. es_ES
dc.description.references Damodaran, S., & Kinsella, J. E. (1980). Flavor protein interactions. Binding of carbonyls to bovine serum-albumin: thermodynamic and conformational effects. Journal of Agricultural and Food Chemistry, 28(3), 567–571. es_ES
dc.description.references dos Santos, J. E., Dockal, E. R., & Cavalheiro, E. T. G. (2005). Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives. Carbohydrate Polymers, 60(3), 277–282. es_ES
dc.description.references Doyle, M. P., & Beuchat, L. R. (2007). Food microbiology: fundamentals and frontiers. Washington: ASM Press. es_ES
dc.description.references Fleming, D. W., Cochi, S. L., MacDonald, K. L., Brondum, J., Hayes, P. S., Plikaytis, B. D., Holmes, M. B., Audurier, A., Broome, C. V., & Reingold, A. L. (1985). Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. New England Journal of Medicine, 312(7), 404–407. es_ES
dc.description.references Foster, L. J. R., & Butt, J. (2011). Chitosan films are not antimicrobial. Biotechnology Letters, 33(2), 417–421. es_ES
dc.description.references Gallstedt, M., & Hedenqvist, M. S. (2006). Packaging-related mechanical and barrier properties of pulp-fiber-chitosan sheets. Carbohydrate Polymers, 63(1), 46–53. es_ES
dc.description.references Gill, A., & Holley, R. (2004). Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Environmental Microbiology, 70(10), 5750–5755. es_ES
dc.description.references Guinesi, L. S., & Cavalheiro, E. T. G. (2006). Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde. Carbohydrate Polymers, 65(4), 557–561. es_ES
dc.description.references Guo, Z. Y., Xing, R. E., Liu, S., Zhong, Z. M., Ji, X., Wang, L., & Li, P. C. (2007). Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydrate Research, 342(10), 1329–1332. es_ES
dc.description.references Gutierrez, J., Barry-Ryan, C., & Bourke, R. (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, 124(1), 91–97. es_ES
dc.description.references Higueras, L., López-Carballo, G., Cerisuelo, J. P., Gavara, R., & Hernández-Muñoz, P. (2013). Preparation and characterization of chitosan/HP-beta-cyclodextrins composites with high sorption capacity for carvacrol. Carbohydrate Polymers, 97(2), 262–268. es_ES
dc.description.references Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273–292. es_ES
dc.description.references Hosseini, S., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50–56. es_ES
dc.description.references Huang, Z.H., Wan, D.C. & Huang, J.L. (2001). Hydrolysis of Schiff bases promoted by UV light. Chemistry Letters, (7), 708–709. es_ES
dc.description.references Inukai, Y., Chinen, T., Matsuda, T., Kaida, Y., & Yasuda, S. J. (1998). Selective separation of germanium (IV) by 2,3-dihydroxypropylchitosan resin. Analytica Chimica Acta, 371(2–3), 187–193. es_ES
dc.description.references Ji, C., & Shi, J. (2013). Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications. Materials Science and Engineering: C, 33(7), 3780–3785. es_ES
dc.description.references Jin, X., Wang, J., & Bai, J. (2009). Synthesis and antimicrobial activity of the Schiff base from chitosan and citral. Carbohydrate Research, 344(6), 825–829. es_ES
dc.description.references Junttila, J. R., Niemela, S. I., & Hirn, J. (1988). Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria. Journal of Applied Bacteriology, 65(4), 321–327. es_ES
dc.description.references Kasaai, M. R., Arul, J., Chin, S. L., & Charlet, G. (1999). The use of intense femtosecond laser pulses for the fragmentation of chitosan. Journal of Photochemistry and Photobiology, A: Chemistry, 120(3), 201–205. es_ES
dc.description.references Kirdant, A. S., Shelke, V. A., Shankarwar, S. G., Shankarwar, A. G., & Chondhekar, T. K. (2011). Kinetic study of hydrolysis of N-salicylidene-m-methyl aniline spectrophotomerically. Journal of Chemical and Pharmaceutical Research, 3(4), 790–796. es_ES
dc.description.references Kuhn, J., Considine, T., & Singh, H. (2006). Interactions of milk proteins and volatile flavor compounds: implications in the development of protein foods. Journal of Food Science, 71(5), R72–R82. es_ES
dc.description.references Li, X., Shao, T., Shi, Q., & Hu, M. (2013). A diaryl Schiff base as a photo- and pH-responsive bifunctional molecule. RSC Advances, 3(45), 22877–22881. es_ES
dc.description.references Lovett, J., Francis, D. W., & Hunt, J. M. (1987). Listeria monocytogenes in raw milk: detection, incidence, and pathogenicity. Journal of Food Protection, 50(3), 188–192. es_ES
dc.description.references Mohamad, A. (2013). Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects. Chemické zvesti, 67(4), 464–476. es_ES
dc.description.references Muhamad, S. G. (2011). First photolysis of benzidine Schiff base in non aqueous solvents. International Journal of Chemistry, 1(3), 142–145. es_ES
dc.description.references Muriel-Galet, V., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2012). Antimicrobial food packaging film based on the release of LAE from EVOH. International Journal of Food Microbiology, 157(2), 239–244. es_ES
dc.description.references Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. es_ES
dc.description.references Renault, F., Sancey, B., & Crini, G. (2009). Chitosan for coagulation/flocculation processes—an eco-friendly approach. European Polymer Journal, 45(5), 1337–1348. es_ES
dc.description.references Sashiwa, H., & Aiba, S. I. (2004). Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science, 29(9), 887–908. es_ES
dc.description.references Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10(2), 37–51. es_ES
dc.description.references Vallapa, N., Wiarachai, O., Thongchul, N., Pan, J. S., Tangpasuthadol, V., Kiatkamjornwong, S., & Hoven, V. P. (2011). Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization. Carbohydrate Polymers, 83(2), 868–875. es_ES
dc.description.references Wang, J. T., Lian, Z. R., Wang, H. D., Jin, X. X., & Liu, Y. J. (2012). Synthesis and antimicrobial activity of Schiff base of chitosan and acylated chitosan. Journal of Applied Polymer Science, 123(6), 3242–3247. es_ES
dc.description.references Zivanovic, S., Chi, S., & Draughon, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70(1), M45–M51. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem