Mostrar el registro sencillo del ítem
dc.contributor.author | Atarés Huerta, Alejandro | es_ES |
dc.contributor.author | Moyano, Elena | es_ES |
dc.contributor.author | Morales, Belén | es_ES |
dc.contributor.author | Schleicher, Peter | es_ES |
dc.contributor.author | García Abellán, José Osvaldo | es_ES |
dc.contributor.author | Antón Martínez, María Teresa | es_ES |
dc.contributor.author | García Sogo, Begoña | |
dc.contributor.author | Pérez Martin, Fernando | |
dc.contributor.author | Lozano, Rafael | |
dc.contributor.author | Borja Flores, Francisco | |
dc.contributor.author | Moreno Ferrero, Vicente | |
dc.contributor.author | Bolarin Jimenez, Maria del Carmen | |
dc.contributor.author | Pineda Chaza, Benito José | |
dc.date.accessioned | 2016-12-16T13:56:53Z | |
dc.date.available | 2016-12-16T13:56:53Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0721-7714 | |
dc.identifier.uri | http://hdl.handle.net/10251/75318 | |
dc.description.abstract | [EN] Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T0 lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Science and Innovation through Grant No. AGL2009-13388-C03, and by the Council of Science and Technology from the Region of Murcia (Spain) (Fundacion SENECA) through grant no. 04553/GERM/06. We thank Dr. Thomas Jack for providing the enhancer trap vector pD991 (Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA). We thank Dr. Maria Jose Diaz (COMAV-UPV, CPI, Edif. 8E, E-46023, Valencia, Spain) for supplying the accession '20164' of Solanum pennellii. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Plant Cell Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Insertional mutagenesis | es_ES |
dc.subject | Solanum pennellii | es_ES |
dc.subject | Enhancer trap | es_ES |
dc.subject | Salinity | es_ES |
dc.subject | Drought | es_ES |
dc.subject | Gene tagging | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00299-011-1094-y | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2009-13388-C03-02/ES/Caracterizacion De Mutantes De Insercion Y Analisis Funcional De Genes Que Controlan El Tamaño Del Fruto De Tomate/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2009-13388-C03-01/ES/Generacion De Mutantes De Insercion De Tomate Cultivado Y Silvestre E Identificacion De Genes Implicados En Procesos Del Desarrollo Y Tolerancia A Estres Abiotico/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa/Funding Program for Research Groups of Excellence/04553%2FGERM%2F06/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2009-13388-C03-03/ES/Caracterizacion De Mutantes De Insercion Y Analisis Funcional De Genes Relacionados Con Tolerancia A La Salinidad Y Estres Hidrico En Tomate Cultivado Y Silvestre/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Atarés Huerta, A.; Moyano, E.; Morales, B.; Schleicher, P.; García Abellán, JO.; Antón Martínez, MT.; García Sogo, B.... (2011). An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Reports. 30(10):1865-1879. https://doi.org/10.1007/s00299-011-1094-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s00299-011-1094-y | es_ES |
dc.description.upvformatpinicio | 1865 | es_ES |
dc.description.upvformatpfin | 1879 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 209152 | es_ES |
dc.identifier.pmid | 21647638 | en_EN |
dc.identifier.pmcid | PMC3172414 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.description.references | Agarie S, Shimoda T, Shimizu Y et al (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1967 | es_ES |
dc.description.references | Alarcon JJ, Sanchez-Blanco MJ, Bolarin MC, Torrecillas A (1993) Water relations and osmotic adjustment in Lycopersicon esculentum and L. pennellii during short-term salt exposure and recovery. Physiol Plant 89:441–447 | es_ES |
dc.description.references | An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J 49:718–728 | es_ES |
dc.description.references | Ashraf M, Harris PJC (2005) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press, New York | es_ES |
dc.description.references | Ashraf M, Athar HR, Harris RJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110 | es_ES |
dc.description.references | Barrero-Gil J, Rodriguez-Navarro A, Benito B (2007) Cloning of the PpNHAD1 transporter of Physcomitrella patens, a chloroplast transporter highly conserved in photosynthetic eukaryotic organisms. J Exp Bot 58:2839–2849 | es_ES |
dc.description.references | Bolarin MC, Fernandez FG, Cruz V, Cuartero J (1991) Salinity tolerance in four wild tomato species using vegetative yield-salinity response curves. J Am Soc Hortic Sci 116:286–290 | es_ES |
dc.description.references | Bolarin MC, Santa-Cruz A, Cayuela E et al (1995) Short-term solutes change in leaves and roots of cultivated and wild tomato seedlings under salinity. J Plant Physiol 147:463–468 | es_ES |
dc.description.references | Bolarin MC, Estañ MT, Caro M et al (2001) Relation between tomato fruit growth and fruit osmotic potential under salinity. Plant Sci 160:1153–1159 | es_ES |
dc.description.references | Borsani O, Cuartero J, Fernandez JA, Valpuesta V, Botella MA (2001) Identification of two loci in tomato reveals distinct mechanisms for salt tolerance. Plant Cell 13:873–887 | es_ES |
dc.description.references | Bot AJ, Nachtergaele FO, Young A (2000) Land resource potential and constraints at regional and country levels. World Soil Resources Reports 90. FAO, Rome | es_ES |
dc.description.references | Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T (1999) Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J 17:699–707 | es_ES |
dc.description.references | Cano EA, Perez-Alfocea F, Moreno V, Bolarin MC (1996) Responses to NaCl stress of cultivated and wild tomato species and their hybrids in callus cultures. Plant Cell Rep 15:791–794 | es_ES |
dc.description.references | Cano EA, Perez-Alfocea F, Moreno V, Caro M, Bolarin MC (1998) Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell Tissue Organ Cult 53:19–26 | es_ES |
dc.description.references | Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR (2003) Reduced expression of Aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 133:1322–1335 | es_ES |
dc.description.references | Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23 | es_ES |
dc.description.references | Chaerle L, Saibo N, van der Straeten D (2005) Tuning the pores: towards engineering plants for improved water use efficiency. Trends Biotechnol 23:308–315 | es_ES |
dc.description.references | Chaves MM, Pereira JS, Maroco J et al (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916 | es_ES |
dc.description.references | Chen SY, Jin WZ, Wang MY, Zhang F, Zhou J, Jia OJ, Wu YR, Liu FY, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105–113 | es_ES |
dc.description.references | Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743 | es_ES |
dc.description.references | Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804 | es_ES |
dc.description.references | Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058 | es_ES |
dc.description.references | Cuartero J, Bolarin MC, Moreno V, Pineda B (2010) Molecular tools for enhancing salinity tolerance in plants. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Berlin, pp 373–405 | es_ES |
dc.description.references | Dan YH, Yan H, Munyikwa T, Dong J, Zhang YL, Armstrong CL (2006) MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep 25:432–441 | es_ES |
dc.description.references | Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318 | es_ES |
dc.description.references | Estañ MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers T, Bolarin MC (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56:703–712 | es_ES |
dc.description.references | Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319 | es_ES |
dc.description.references | Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963 | es_ES |
dc.description.references | Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics. doi: 10.1155/2007/64358 | es_ES |
dc.description.references | Frary A, Nesbitt TC, Frary A et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88 | es_ES |
dc.description.references | Frary A, Gol D, Keles D et al (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10:58 | es_ES |
dc.description.references | Galbiati M, Simoni L, Pavesi G et al (2008) Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells. Plant J 53:750–762 | es_ES |
dc.description.references | Gimenez-Caminero E, Pineda B, Capel J et al (2010) Functional analysis of the Arlequin mutant corroborates the essential role of the arlequin/tagl1 gene during reproductive development of tomato. PLoS ONE. doi: 10.1371/journal.pone.0014427 | es_ES |
dc.description.references | Gisbert I, Arrillaga I, Roig LA, Moreno V (1999) Acquisition of a collection of Lycopersicon pennellii (Corr. D’Arcy) transgenic plants with uidA and nptII marker genes. J Hortic Sci Biotechnol 74:105–109 | es_ES |
dc.description.references | Gong QQ, Li PH, Ma SS, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839 | es_ES |
dc.description.references | Harada E, Kim JA, Meyer AJ et al (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51(10):1627–1637 | es_ES |
dc.description.references | Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052 | es_ES |
dc.description.references | Indorf M, Cordero J, Neuhaus G, Rodriguez-Franco M (2007) Salt tolerance (STO), a stress-related protein, has a major role in light signalling. Plant J 51:563–574 | es_ES |
dc.description.references | Jeong DH, An SY, Kang HG, Moon S, Han JJ, Park S, Lee HS, An KS, An GH (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644 | es_ES |
dc.description.references | Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T-halophila. Plant Cell Environ 29:1220–1234 | es_ES |
dc.description.references | Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290 | es_ES |
dc.description.references | Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 50(7):1215–1231 | es_ES |
dc.description.references | Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589 | es_ES |
dc.description.references | Mamidala P, Nanna RS (2009) Influence of antibiotics on regeneration efficiency in tomato. Plant Omics 2:135–140 | es_ES |
dc.description.references | Medina J, Rodriguez-Franco M, Penalosa A, Carrascosa MJ, Neuhaus G, Salinas J (2005) Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. Plant J 42:586–597 | es_ES |
dc.description.references | Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL (2006) Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J 48:743–756 | es_ES |
dc.description.references | Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681 | es_ES |
dc.description.references | Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497 | es_ES |
dc.description.references | Nunes-Nesi A, Carrari F, Lytovchenko A et al (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622 | es_ES |
dc.description.references | Olias R, Eljakaoui Z, Li J, De Morales PA, Marin-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916 | es_ES |
dc.description.references | Peng H, Huang HM, Yang YZ, Zhai Y, Wu JX, Huang DF, Lu TG (2005) Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Plant Sci 168:1571–1579 | es_ES |
dc.description.references | Perez-Alfocea F, Balibrea E, Alarcon JJ et al (2000) Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species. J Plant Physiol 156:367–374 | es_ES |
dc.description.references | Ramachandran S, Sundaresan V (2001) Transposons as tools for functional genomics. Plant Physiol Biochem 39:243–252 | es_ES |
dc.description.references | Roelfsema MR, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691 | es_ES |
dc.description.references | Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265–272 | es_ES |
dc.description.references | Rus AM, Rios S, Olmos E et al (2000) Long-term culture modifies the salt responses of callus lines of salt tolerant and salt-sensitive tomato species. J Plant Physiol 157:413–420 | es_ES |
dc.description.references | Sakamoto H, Matsuda O, Iba K (2008) ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana. Plant J 56:411–422 | es_ES |
dc.description.references | Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37:65–71 | es_ES |
dc.description.references | Shahin EA (1985) Totipotency of tomato protoplasts. Theor and Appl Genet 69:235–240 | es_ES |
dc.description.references | Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97:6896–6901 | es_ES |
dc.description.references | Shi HZ, Xiong LM, Stevenson B, Lu TG, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14:575–588 | es_ES |
dc.description.references | Simmons AT, Gurr GM (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol 7:265–276 | es_ES |
dc.description.references | Simmons AT, Gurr GM, McGrath D, Nicol HI, Martin PM (2003) Trichomes of Lycopersicon spp. and their effect on Myzus persicae (Sulzer) (Hemiptera: Aphididae). Aust J Entomol 42:373–378 | es_ES |
dc.description.references | Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020 | es_ES |
dc.description.references | Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791–793 | es_ES |
dc.description.references | Wang YH, Xue YB, Li JY (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10:610–614 | es_ES |
dc.description.references | Wong CE, Li Y, Labbe A et al (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450 | es_ES |
dc.description.references | Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627 | es_ES |
dc.description.references | Zhu JK, Liu JP, Xiong LM (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191 | es_ES |