- -

An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii

Show simple item record

Files in this item

dc.contributor.author Atarés Huerta, Alejandro es_ES
dc.contributor.author Moyano, Elena es_ES
dc.contributor.author Morales, Belén es_ES
dc.contributor.author Schleicher, Peter es_ES
dc.contributor.author García Abellán, José Osvaldo es_ES
dc.contributor.author Antón Martínez, María Teresa es_ES
dc.contributor.author García Sogo, Begoña
dc.contributor.author Pérez Martin, Fernando
dc.contributor.author Lozano, Rafael
dc.contributor.author Borja Flores, Francisco
dc.contributor.author Moreno Ferrero, Vicente
dc.contributor.author Bolarin Jimenez, Maria del Carmen
dc.contributor.author Pineda Chaza, Benito José
dc.date.accessioned 2016-12-16T13:56:53Z
dc.date.available 2016-12-16T13:56:53Z
dc.date.issued 2011
dc.identifier.issn 0721-7714
dc.identifier.uri http://hdl.handle.net/10251/75318
dc.description.abstract [EN] Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T0 lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation through Grant No. AGL2009-13388-C03, and by the Council of Science and Technology from the Region of Murcia (Spain) (Fundacion SENECA) through grant no. 04553/GERM/06. We thank Dr. Thomas Jack for providing the enhancer trap vector pD991 (Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA). We thank Dr. Maria Jose Diaz (COMAV-UPV, CPI, Edif. 8E, E-46023, Valencia, Spain) for supplying the accession '20164' of Solanum pennellii. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Spanish Ministry of Science and Innovation through Grant No. AGL2009-13388- C03 es_ES
dc.relation Council of Science and Technology from the Region of Murcia (Spain) (Fundación SENECA) 04553/GERM/06 es_ES
dc.relation.ispartof Plant Cell Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Insertional mutagenesis es_ES
dc.subject Solanum pennellii es_ES
dc.subject Enhancer trap es_ES
dc.subject Salinity es_ES
dc.subject Drought es_ES
dc.subject Gene tagging es_ES
dc.subject.classification GENETICA es_ES
dc.title An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00299-011-1094-y
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Atarés Huerta, A.; Moyano, E.; Morales, B.; Schleicher, P.; García Abellán, JO.; Antón Martínez, MT.; García Sogo, B.... (2011). An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Reports. 30(10):1865-1879. doi:10.1007/s00299-011-1094-y es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s00299-011-1094-y es_ES
dc.description.upvformatpinicio 1865 es_ES
dc.description.upvformatpfin 1879 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 209152 es_ES
dc.identifier.pmid 21647638 en_EN
dc.identifier.pmcid PMC3172414 en_EN
dc.relation.references Agarie S, Shimoda T, Shimizu Y et al (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1967 es_ES
dc.relation.references Alarcon JJ, Sanchez-Blanco MJ, Bolarin MC, Torrecillas A (1993) Water relations and osmotic adjustment in Lycopersicon esculentum and L. pennellii during short-term salt exposure and recovery. Physiol Plant 89:441–447 es_ES
dc.relation.references An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J 49:718–728 es_ES
dc.relation.references Ashraf M, Harris PJC (2005) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press, New York es_ES
dc.relation.references Ashraf M, Athar HR, Harris RJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110 es_ES
dc.relation.references Barrero-Gil J, Rodriguez-Navarro A, Benito B (2007) Cloning of the PpNHAD1 transporter of Physcomitrella patens, a chloroplast transporter highly conserved in photosynthetic eukaryotic organisms. J Exp Bot 58:2839–2849 es_ES
dc.relation.references Bolarin MC, Fernandez FG, Cruz V, Cuartero J (1991) Salinity tolerance in four wild tomato species using vegetative yield-salinity response curves. J Am Soc Hortic Sci 116:286–290 es_ES
dc.relation.references Bolarin MC, Santa-Cruz A, Cayuela E et al (1995) Short-term solutes change in leaves and roots of cultivated and wild tomato seedlings under salinity. J Plant Physiol 147:463–468 es_ES
dc.relation.references Bolarin MC, Estañ MT, Caro M et al (2001) Relation between tomato fruit growth and fruit osmotic potential under salinity. Plant Sci 160:1153–1159 es_ES
dc.relation.references Borsani O, Cuartero J, Fernandez JA, Valpuesta V, Botella MA (2001) Identification of two loci in tomato reveals distinct mechanisms for salt tolerance. Plant Cell 13:873–887 es_ES
dc.relation.references Bot AJ, Nachtergaele FO, Young A (2000) Land resource potential and constraints at regional and country levels. World Soil Resources Reports 90. FAO, Rome es_ES
dc.relation.references Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T (1999) Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J 17:699–707 es_ES
dc.relation.references Cano EA, Perez-Alfocea F, Moreno V, Bolarin MC (1996) Responses to NaCl stress of cultivated and wild tomato species and their hybrids in callus cultures. Plant Cell Rep 15:791–794 es_ES
dc.relation.references Cano EA, Perez-Alfocea F, Moreno V, Caro M, Bolarin MC (1998) Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell Tissue Organ Cult 53:19–26 es_ES
dc.relation.references Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR (2003) Reduced expression of Aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 133:1322–1335 es_ES
dc.relation.references Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23 es_ES
dc.relation.references Chaerle L, Saibo N, van der Straeten D (2005) Tuning the pores: towards engineering plants for improved water use efficiency. Trends Biotechnol 23:308–315 es_ES
dc.relation.references Chaves MM, Pereira JS, Maroco J et al (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916 es_ES
dc.relation.references Chen SY, Jin WZ, Wang MY, Zhang F, Zhou J, Jia OJ, Wu YR, Liu FY, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105–113 es_ES
dc.relation.references Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743 es_ES
dc.relation.references Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804 es_ES
dc.relation.references Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058 es_ES
dc.relation.references Cuartero J, Bolarin MC, Moreno V, Pineda B (2010) Molecular tools for enhancing salinity tolerance in plants. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Berlin, pp 373–405 es_ES
dc.relation.references Dan YH, Yan H, Munyikwa T, Dong J, Zhang YL, Armstrong CL (2006) MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep 25:432–441 es_ES
dc.relation.references Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318 es_ES
dc.relation.references Estañ MT, Martinez-Rodriguez MM, Perez-Alfocea F, Flowers T, Bolarin MC (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56:703–712 es_ES
dc.relation.references Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319 es_ES
dc.relation.references Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963 es_ES
dc.relation.references Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics. doi: 10.1155/2007/64358 es_ES
dc.relation.references Frary A, Nesbitt TC, Frary A et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88 es_ES
dc.relation.references Frary A, Gol D, Keles D et al (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10:58 es_ES
dc.relation.references Galbiati M, Simoni L, Pavesi G et al (2008) Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells. Plant J 53:750–762 es_ES
dc.relation.references Gimenez-Caminero E, Pineda B, Capel J et al (2010) Functional analysis of the Arlequin mutant corroborates the essential role of the arlequin/tagl1 gene during reproductive development of tomato. PLoS ONE. doi: 10.1371/journal.pone.0014427 es_ES
dc.relation.references Gisbert I, Arrillaga I, Roig LA, Moreno V (1999) Acquisition of a collection of Lycopersicon pennellii (Corr. D’Arcy) transgenic plants with uidA and nptII marker genes. J Hortic Sci Biotechnol 74:105–109 es_ES
dc.relation.references Gong QQ, Li PH, Ma SS, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839 es_ES
dc.relation.references Harada E, Kim JA, Meyer AJ et al (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51(10):1627–1637 es_ES
dc.relation.references Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052 es_ES
dc.relation.references Indorf M, Cordero J, Neuhaus G, Rodriguez-Franco M (2007) Salt tolerance (STO), a stress-related protein, has a major role in light signalling. Plant J 51:563–574 es_ES
dc.relation.references Jeong DH, An SY, Kang HG, Moon S, Han JJ, Park S, Lee HS, An KS, An GH (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644 es_ES
dc.relation.references Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T-halophila. Plant Cell Environ 29:1220–1234 es_ES
dc.relation.references Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290 es_ES
dc.relation.references Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 50(7):1215–1231 es_ES
dc.relation.references Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589 es_ES
dc.relation.references Mamidala P, Nanna RS (2009) Influence of antibiotics on regeneration efficiency in tomato. Plant Omics 2:135–140 es_ES
dc.relation.references Medina J, Rodriguez-Franco M, Penalosa A, Carrascosa MJ, Neuhaus G, Salinas J (2005) Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. Plant J 42:586–597 es_ES
dc.relation.references Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL (2006) Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J 48:743–756 es_ES
dc.relation.references Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681 es_ES
dc.relation.references Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497 es_ES
dc.relation.references Nunes-Nesi A, Carrari F, Lytovchenko A et al (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622 es_ES
dc.relation.references Olias R, Eljakaoui Z, Li J, De Morales PA, Marin-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916 es_ES
dc.relation.references Peng H, Huang HM, Yang YZ, Zhai Y, Wu JX, Huang DF, Lu TG (2005) Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Plant Sci 168:1571–1579 es_ES
dc.relation.references Perez-Alfocea F, Balibrea E, Alarcon JJ et al (2000) Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species. J Plant Physiol 156:367–374 es_ES
dc.relation.references Ramachandran S, Sundaresan V (2001) Transposons as tools for functional genomics. Plant Physiol Biochem 39:243–252 es_ES
dc.relation.references Roelfsema MR, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167:665–691 es_ES
dc.relation.references Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265–272 es_ES
dc.relation.references Rus AM, Rios S, Olmos E et al (2000) Long-term culture modifies the salt responses of callus lines of salt tolerant and salt-sensitive tomato species. J Plant Physiol 157:413–420 es_ES
dc.relation.references Sakamoto H, Matsuda O, Iba K (2008) ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana. Plant J 56:411–422 es_ES
dc.relation.references Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37:65–71 es_ES
dc.relation.references Shahin EA (1985) Totipotency of tomato protoplasts. Theor and Appl Genet 69:235–240 es_ES
dc.relation.references Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97:6896–6901 es_ES
dc.relation.references Shi HZ, Xiong LM, Stevenson B, Lu TG, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14:575–588 es_ES
dc.relation.references Simmons AT, Gurr GM (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol 7:265–276 es_ES
dc.relation.references Simmons AT, Gurr GM, McGrath D, Nicol HI, Martin PM (2003) Trichomes of Lycopersicon spp. and their effect on Myzus persicae (Sulzer) (Hemiptera: Aphididae). Aust J Entomol 42:373–378 es_ES
dc.relation.references Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020 es_ES
dc.relation.references Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791–793 es_ES
dc.relation.references Wang YH, Xue YB, Li JY (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10:610–614 es_ES
dc.relation.references Wong CE, Li Y, Labbe A et al (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450 es_ES
dc.relation.references Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627 es_ES
dc.relation.references Zhu JK, Liu JP, Xiong LM (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191 es_ES


This item appears in the following Collection(s)

Show simple item record