- -

A quantitative approach to weak compactness in Fréchet spaces and spaces C(X)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A quantitative approach to weak compactness in Fréchet spaces and spaces C(X)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Angosto Hernández, Carlos es_ES
dc.contributor.author Kakol, Jerzy Marian es_ES
dc.contributor.author López Pellicer, Manuel es_ES
dc.date.accessioned 2016-12-19T08:32:56Z
dc.date.available 2016-12-19T08:32:56Z
dc.date.issued 2013-07-01
dc.identifier.issn 0022-247X
dc.identifier.uri http://hdl.handle.net/10251/75351
dc.description.abstract [EN] Let E be a Frechet space, i.e. a metrizable and complete locally convex space (lcs), E '' its strong second dual with a defining sequence of seminorms parallel to center dot parallel to(n) induced by a decreasing basis of absolutely convex neighbourhoods of zero U-n, and let H subset of E be a bounded set. Let ck(H) := sup{d(cluste(E '') (phi), E) : phi is an element of H-N} be the "worst" distance of the set of weak *-cluster points in E '' of sequences in H to E, and k(H) := sup{d(h, E) : h is an element of (H) over bar} the worst distance of (H) over bar the weak *-closure in the bidual of H to E, where d means the natural metric of E ''. Let gamma(n)(H) := sup {vertical bar lim(p) lim(m) u(p) (h(m)) - lim(m) lim(p) u(p) (h(m))vertical bar : (u(p)) subset of U-n(0), (h(m)) subset of H}, provided the involved limits exist. We extend a recent result of Angosto-Cascales to Frechet spaces by showing that: If x** is an element of (H) over bar, there is a sequence (x(p))(p) in H such that d(n)(x**, y**) <= gamma(n)(H) for each sigma (E '', E')-cluster point y** of (x(p))(p) and n is an element of N. Moreover, k(H) = 0 iff ck(H) = 0. This provides a quantitative version of the weak angelicity in a Frechet space. Also we show that ck(H) <= (d) over cap((H) over bar, C(X, Z)) <= 17ck(H), where H subset of Z(X) is relatively compact and C(X, Z) is the space of Z-valued continuous functions for a web-compact space X and a separable metric space Z, being now ck(H) the "worst" distance of the set of cluster points in Z(X) of sequences in H to C(X, Z), respect to the standard supremum metric d, and (d) over cap((H) over bar, C(X, Z)) := sup{f, C(X, Z), f is an element of (H) over bar}. This yields a quantitative version of Orihuela's angelic theorem. If X is strongly web-compact then ck(H) <= (d) over cap((H) over bar, C(X, Z)) <= 5ck(H); this happens if X = (E', sigma(E', E)) for E is an element of (sic) (for instance, if E is a (DF)-space or an (LF)-space). In the particular case that E is a separable metrizable locally convex space then (d) over cap((H) over bar, C(X, Z)) = ck(H) for each bounded H subset of R-X es_ES
dc.description.abstract [ES] Se obtienen medidas que caracterizan cuantitativamente la compacidad débil en espacios de Fréchet. De estas medidas se deducen pruebas muy sencillas de resultados de compacidad en espacios de Fréchet, extendiendo resultados previos obtenidos recientemente en espacios de Banach. Además se obtienen medidas cuantitativas de compacidad en espacios C(X) con la topología puntual, estudiando la aproximación por sucesiones, así como diferentes propiedades del espacio de funciones continuas C(X) para clases importantes de espacios X. es_ES
dc.description.sponsorship The research was supported for the first named author by the project MTM2008-05396 of the Spanish Ministry of Science and Innovation and by Fundacion Seneca (CARM), grant 08848/PI/08, for the second named author by National Center of Science, Poland, grant no. N N201 605340 and for the second and third authors by the project MTM2008-01502 of the Spanish Ministry of Science and Innovation. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Mathematical Analysis and Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Angelicity es_ES
dc.subject Compact space es_ES
dc.subject Countably compact es_ES
dc.subject C(X) es_ES
dc.subject Fréchet space es_ES
dc.subject Web compact space es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A quantitative approach to weak compactness in Fréchet spaces and spaces C(X) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jmaa.2013.01.055
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2008-05396/ES/LA INTERACCION ENTRE TEORIA DE LA MEDIDA, TOPOLOGIA Y ANALISIS FUNCIONAL/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//08848%2FPI%2F08/ES/Medida, Topología, Análisis funcional y sus aplicaciones en finanzas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//N N201 605340/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2008-01502/ES/ELEMENTOS DE TOPOLOGIA DESCRIPTIVA DE CONJUNTOS EN ANALISIS FUNCIONAL LINEAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Angosto Hernández, C.; Kakol, JM.; López Pellicer, M. (2013). A quantitative approach to weak compactness in Fréchet spaces and spaces C(X). Journal of Mathematical Analysis and Applications. 403(1):13-22. https://doi.org/10.1016/j.jmaa.2013.01.055 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1016/j.jmaa.2013.01.055 es_ES
dc.description.upvformatpinicio 13 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 403 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 237167 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem