- -

Dynamics of a plant RNA virus intracellular accumulation: stamping machine versus geometric replication

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamics of a plant RNA virus intracellular accumulation: stamping machine versus geometric replication

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martinez, Fernando es_ES
dc.contributor.author Sardanyes Cayuela, Jose es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.contributor.author Daros Arnau, Jose Antonio es_ES
dc.date.accessioned 2016-12-19T09:06:38Z
dc.date.available 2016-12-19T09:06:38Z
dc.date.issued 2011-07
dc.identifier.issn 0016-6731
dc.identifier.uri http://hdl.handle.net/10251/75354
dc.description.abstract [EN] The tremendous evolutionary potential of RNA viruses allows them to thrive despite host defense mechanisms and endows them with properties such as emergence, host switching, and virulence. The frequency of mutant viruses after an infectious process results from the interplay between the error rate of the viral replicase, from purifying mechanisms acting after transcription on aberrant RNAs, and from the amplification dynamics of virus RNA positive (+) and negative (-) strands. Two extreme scenarios describing viral RNA amplification are the geometric growth, in which each RNA strand serves as template for the synthesis of complementary strands with the same efficiency, and the stamping machine, where a strand is reiteratively used as template to synthesize multiple copies of the complementary. The resulting mutation frequencies are completely different, being geometric growth largely more mutagenic than stamping machine. In this work we evaluate the contribution of geometric growth and stamping machine to the overall genome amplification of the plant (+)-strand RNA virus turnip mosaic virus (TuMV). By means of transfection experiments of Nicotiana benthamiana protoplasts with a TuMV cDNA infectious clone and by using strand-specific quantitative real-time PCR, we determined the amplification dynamics of viral (+) and (-) RNA during a single-cell infectious process. A mathematical model describing the amplification of each viral strand was fitted to the data. Analyses of the model parameters showed that TuMV (+) and (-) RNA amplification occurs through a mixed strategy with similar to 93% of genomes produced via stamping machine and only similar to 7% resulting from geometric growth es_ES
dc.description.sponsorship Special thanks are due to Javier Garcia-Andrade for his generous help and useful suggestions in protoplast transfection work, to Javier Carrera for help with the Monte Carlo simulated annealing algorithm, Mark P. Zwart for critical reading of the manuscript, and two anonymous reviewers for insightful comments and suggestions. F. M. is the recipient of a predoctoral fellowship from Universidad Politecnica de Valencia. This work has been supported by grants BIO2008-01986 (J.A.D.) and BFU2009-06993 (S. F. E.) from the Spanish Ministerio de Ciencia e Innovacion, RGP2008/12 from the Human Frontier Science Program Organization and PROMETEO/2010/019 from the Generalitat Valenciana. We also acknowledge support from the Santa Fe Institute. en_EN
dc.language Inglés es_ES
dc.publisher Genetics Society of America es_ES
dc.relation.ispartof Genetics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MUTATION-RATES es_ES
dc.subject STRANDED RNA es_ES
dc.subject VIRAL-RNA es_ES
dc.subject QUANTIFICATION es_ES
dc.subject ROBUSTNESS es_ES
dc.subject MUTANTS es_ES
dc.subject MODE es_ES
dc.subject GENE es_ES
dc.subject PCR es_ES
dc.title Dynamics of a plant RNA virus intracellular accumulation: stamping machine versus geometric replication es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1534/genetics.111.129114
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-01986/ES/INTERACCIONES RNA-PROTEINA EN EL CICLO INFECCIOSO DE PATOGENOS DE RNA DE PLANTAS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/HFSP//RGP0012%2F2008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F019/ES/Implicaciones evolutivas de la supresión del silenciamiento del RNA por parte de proteína virales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Martinez, F.; Sardanyes Cayuela, J.; Elena Fito, SF.; Daros Arnau, JA. (2011). Dynamics of a plant RNA virus intracellular accumulation: stamping machine versus geometric replication. Genetics. 188(3):637-646. https://doi.org/10.1534/genetics.111.129114 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1534/genetics.111.129114 es_ES
dc.description.upvformatpinicio 637 es_ES
dc.description.upvformatpfin 646 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 188 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 216044 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Human Frontier Science Program Organization es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Afonina, I., Ankoudinova, I., Mills, A., Lokhov, S., Huynh, P., & Mahoney, W. (2007). Primers with 5′ flaps improve real-time PCR. BioTechniques, 43(6), 770-774. doi:10.2144/000112631 es_ES
dc.description.references Bessaud, M., Autret, A., Jegouic, S., Balanant, J., Joffret, M.-L., & Delpeyroux, F. (2008). Development of a Taqman RT-PCR assay for the detection and quantification of negatively stranded RNA of human enteroviruses: Evidence for false-priming and improvement by tagged RT-PCR. Journal of Virological Methods, 153(2), 182-189. doi:10.1016/j.jviromet.2008.07.010 es_ES
dc.description.references Chao, L., Rang, C. U., & Wong, L. E. (2002). Distribution of Spontaneous Mutants and Inferences about the Replication Mode of the RNA Bacteriophage  6. Journal of Virology, 76(7), 3276-3281. doi:10.1128/jvi.76.7.3276-3281.2002 es_ES
dc.description.references Chen, C. C., Chao, C. H., Chen, C. C., Yeh, S. D., Tsai, H. T., & Chang, C. A. (2003). Identification ofTurnip mosaic virusIsolates Causing Yellow Stripe and Spot on Calla Lily. Plant Disease, 87(8), 901-905. doi:10.1094/pdis.2003.87.8.901 es_ES
dc.description.references Chung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105 es_ES
dc.description.references Den Boon, J. A., Diaz, A., & Ahlquist, P. (2010). Cytoplasmic Viral Replication Complexes. Cell Host & Microbe, 8(1), 77-85. doi:10.1016/j.chom.2010.06.010 es_ES
dc.description.references Denhardt, D. T., & Silver, R. B. (1966). An analysis of the clone size distribution of ΦX174 mutants and recombinants. Virology, 30(1), 10-19. doi:10.1016/s0042-6822(66)81004-8 es_ES
dc.description.references Drake, J. W. (1993). Rates of spontaneous mutation among RNA viruses. Proceedings of the National Academy of Sciences, 90(9), 4171-4175. doi:10.1073/pnas.90.9.4171 es_ES
dc.description.references Drake, J. W., & Holland, J. J. (1999). Mutation rates among RNA viruses. Proceedings of the National Academy of Sciences, 96(24), 13910-13913. doi:10.1073/pnas.96.24.13910 es_ES
dc.description.references Duffy, S., Shackelton, L. A., & Holmes, E. C. (2008). Rates of evolutionary change in viruses: patterns and determinants. Nature Reviews Genetics, 9(4), 267-276. doi:10.1038/nrg2323 es_ES
dc.description.references Elena, S. F., & Sanjuan, R. (2005). Adaptive Value of High Mutation Rates of RNA Viruses: Separating Causes from Consequences. Journal of Virology, 79(18), 11555-11558. doi:10.1128/jvi.79.18.11555-11558.2005 es_ES
dc.description.references Elena, S. F., Carrasco, P., Daròs, J.-A., & Sanjuán, R. (2006). Mechanisms of genetic robustness in RNA viruses. EMBO reports, 7(2), 168-173. doi:10.1038/sj.embor.7400636 es_ES
dc.description.references FERRERORTA, C., ARIAS, A., ESCARMIS, C., & VERDAGUER, N. (2006). A comparison of viral RNA-dependent RNA polymerases. Current Opinion in Structural Biology, 16(1), 27-34. doi:10.1016/j.sbi.2005.12.002 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Koonin, E. V., Wolf, Y. I., Nagasaki, K., & Dolja, V. V. (2008). The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nature Reviews Microbiology, 6(12), 925-939. doi:10.1038/nrmicro2030 es_ES
dc.description.references Laliberté, J.-F., & Sanfaçon, H. (2010). Cellular Remodeling During Plant Virus Infection. Annual Review of Phytopathology, 48(1), 69-91. doi:10.1146/annurev-phyto-073009-114239 es_ES
dc.description.references Murray J. D. , 1989 Mathematical Biology. Springer Verlag, New York. es_ES
dc.description.references Plaskon, N. E., Adelman, Z. N., & Myles, K. M. (2009). Accurate Strand-Specific Quantification of Viral RNA. PLoS ONE, 4(10), e7468. doi:10.1371/journal.pone.0007468 es_ES
dc.description.references Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10 es_ES
dc.description.references Sardanyes, J., Sole, R. V., & Elena, S. F. (2009). Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 83(23), 12579-12589. doi:10.1128/jvi.00767-09 es_ES
dc.description.references Thébaud, G., Chadœuf, J., Morelli, M. J., McCauley, J. W., & Haydon, D. T. (2009). The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 809-817. doi:10.1098/rspb.2009.1247 es_ES
dc.description.references Tromas, N., & Elena, S. F. (2010). The Rate and Spectrum of Spontaneous Mutations in a Plant RNA Virus. Genetics, 185(3), 983-989. doi:10.1534/genetics.110.115915 es_ES
dc.description.references Tuiskunen, A., Leparc-Goffart, I., Boubis, L., Monteil, V., Klingstrom, J., Tolou, H. J., … Plumet, S. (2009). Self-priming of reverse transcriptase impairs strand-specific detection of dengue virus RNA. Journal of General Virology, 91(4), 1019-1027. doi:10.1099/vir.0.016667-0 es_ES
dc.description.references Urcuqui-Inchima, S., Haenni, A.-L., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74(1-2), 157-175. doi:10.1016/s0168-1702(01)00220-9 es_ES
dc.description.references Yoo, S.-D., Cho, Y.-H., & Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2(7), 1565-1572. doi:10.1038/nprot.2007.199 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem