- -

Effects of Microwave Heating on Sensory Characteristics of Kiwifruit Puree

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Effects of Microwave Heating on Sensory Characteristics of Kiwifruit Puree

Show simple item record

Files in this item

dc.contributor.author Benlloch Tinoco, María es_ES
dc.contributor.author Varela Tomasco, Paula Alejandra es_ES
dc.contributor.author Salvador Alcaraz, Ana es_ES
dc.contributor.author Martínez Navarrete, Nuria es_ES
dc.date.accessioned 2016-12-28T08:09:39Z
dc.date.available 2016-12-28T08:09:39Z
dc.date.issued 2012-11
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/75845
dc.description.abstract The effect of microwave processing on the characteristics of kiwifruit puree was evaluated by applying various gentle treatments. Different combinations of microwave power/processing time were applied, with power among 200-1,000 W and time among 60-340 s, and various sensory and instrumental measurements were performed with the aim of establishing correlations and determining which instrumental parameters were the most appropriate to control the quality of kiwi puree. The water and soluble solids of the product, 83 and 14/100 g sample, respectively, did not change due to treatments. For sensory assessment, an expert panel was previously trained to describe the product. Fourteen descriptors were defined, but only the descriptors 'typical kiwifruit colour', 'tone', 'lightness', 'visual consistency' and 'typical taste' were significant to distinguish between kiwifruit puree samples. The instrumental analysis of samples consisted in measuring consistency, viscosity, colour and physicochemical characteristics of the treated and fresh puree. Applying intense treatments (600 W-340 s, 900 W-300 s and 1,000 W-200 s) through high power or long treatment periods or a combination of these factors, mainly affects the consistency (flow distance decreased from 5. 9 to 3. 4 mm/g sample), viscosity (increased from 1. 6 to 2. 5 Pa/s), colour (maximun ¿E was 6 U) and taste of the product. As a result, samples were thicker and with an atypical flavour and kiwifruit colour due to increased clarity (L* increased from 38 to 43) and slight changes in the yellow-green hue (h* decreased from 95 to 94). For the instrumental determinations of colour and visual perception of consistency, the most suitable parameters for quality control are the colour coordinates L*, a*, h*, whiteness index and flow distance measured with a Bostwick consistometer. © 2011 Springer Science+Business Media, LLC. es_ES
dc.description.sponsorship The authors thank the Ministerio de Educacion y Ciencia for the financial support given throughout the Project AGL 2010-22176. The authors are indebted to the Generalitat Valenciana (Valencia, Spain) for the Grant awarded to the author Maria Benlloch. The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Colour es_ES
dc.subject Consistency es_ES
dc.subject Descriptive sensory assessment es_ES
dc.subject Kiwifruit es_ES
dc.subject Microwaves es_ES
dc.subject Taste es_ES
dc.subject Descriptors es_ES
dc.subject Expert panels es_ES
dc.subject Flow distance es_ES
dc.subject High-power es_ES
dc.subject Instrumental analysis es_ES
dc.subject Instrumental measurements es_ES
dc.subject Instrumental parameters es_ES
dc.subject Kiwifruits es_ES
dc.subject Microwave power es_ES
dc.subject Microwave processing es_ES
dc.subject Physicochemical characteristics es_ES
dc.subject Sensory characteristics es_ES
dc.subject Soluble solids es_ES
dc.subject Visual consistency es_ES
dc.subject Visual perception es_ES
dc.subject Whiteness Index es_ES
dc.subject Instruments es_ES
dc.subject Quality control es_ES
dc.subject Viscosity es_ES
dc.subject Color es_ES
dc.subject Actinidia deliciosa es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effects of Microwave Heating on Sensory Characteristics of Kiwifruit Puree es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-011-0652-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2010-22176/ES/APLICACION DE METODOS COMBINADOS PARA LA OBTENCION DE PRODUCTOS DE FRUTA EN POLVO, DESHIDRATADOS Y FRITOS DE ALTA CALIDAD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Benlloch Tinoco, M.; Varela Tomasco, PA.; Salvador Alcaraz, A.; Martínez Navarrete, N. (2012). Effects of Microwave Heating on Sensory Characteristics of Kiwifruit Puree. Food and Bioprocess Technology. 5(8):3021-3031. https://doi.org/10.1007/s11947-011-0652-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s11947-011-0652-1 es_ES
dc.description.upvformatpinicio 3021 es_ES
dc.description.upvformatpfin 3031 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 193395 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Albert, A., Varela, P., Salvador, A., & Fiszman, S. M. (2009). Improvement of crunchiness of battered fish nuggets. European Food Research and Technology, 228, 923–930. es_ES
dc.description.references Alegria, P., Pinheiro, J., Gonçalves, E. M., Fernandes, I., Moldao, M., & Abreu, M. (2010). Evaluation of a pre-cut heat treatment as an alternative to chlorine in minimally processed shredded carrot. Innovative Food Science and Emerging Technologies, 11, 155–161. es_ES
dc.description.references AOAC. (2000). Official Methods of Analysis of AOAC International. Gaithersburg: AOAC. es_ES
dc.description.references Barboni, T., Cannac, M., & Chiaramonti, N. (2010). Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chemistry, 121, 946–951. es_ES
dc.description.references Beirão-da-Costa, S., Steiner, A., Correia, L., Empis, J., & Moldão-Martins, M. (2006). Effects of maturity stage and mild heat treatments on quality of minimally processed kiwifruitfruit. Journal of Food Engineering, 76, 616–625. es_ES
dc.description.references Bodart, M., de Peñaranda, R., Deneyer, A., & Flamant, G. (2008). Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Building and Environment, 43, 2046–2058. es_ES
dc.description.references Bourne, M. C. (1982). Food texture and viscosity-concept and measurement. New York: Academic. es_ES
dc.description.references Cano, M. P., Hernández, A., & de Ancos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. Journal of Food Science, 62(1), 85–88. es_ES
dc.description.references Chiralt, A., Martínez-Navarrete, N., Camacho, M. M., & González, C. (1998). Experimentos de fisicoquímica de alimentos. Valencia: Editorial Universidad Politécnica de Valencia (Chapter 3). es_ES
dc.description.references Chiralt, A., Martínez-Navarrete, N., González, C., Talens, P., & Moraga, G. (2007). Propiedades físicas de los alimentos. Valencia: Editorial Universidad Politécnica de Valencia (Chapter 16). es_ES
dc.description.references Contreras, C., Martín, M. E., Martínez-Navarrete, N., & Chiralt, A. (2005). Effect of vacuum impregnation and microwave application on structural changes occurred during air drying of apple. Food Science and Technology/LWT, 38(5), 471–477. es_ES
dc.description.references Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2007). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504. es_ES
dc.description.references de Ancos, B., Cano, M. P., Hernández, A., & Monreal, M. (1999). Effects of microwave heating on pigment composition and color of fruit purees. Journal of the Science of Food and Agriculture, 79, 663–670. es_ES
dc.description.references Dubost, N. J., Shewfelt, R. L., & Eitenmiller, R. R. (2003). Consumer acceptability, sensory and instrumental analysis of peanut soy spreads. Journal of Food Quality, 26, 27–42. es_ES
dc.description.references Escribano, S., Sánchez, F. J., & Lázaro, A. (2010). Establishment of a sensory characterization protocol for melon (Cucumis melo L.) and its correlation with physical-chemical attributes: indications for future genetics improvements. European Food Research and Technology, 231, 611–621. es_ES
dc.description.references Fang, L., Jiang, B., & Zhang, T. (2008). Effect of combined high pressure and thermal treatment in kiwifruit peroxidase. Food Chemistry, 109, 802–807. es_ES
dc.description.references Fisk, C. L., McDaniel, M. R., Strick, B. C., & Zhao, Y. (2006). Physicochemical, sensory, and nutritive qualities of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’) as affected by harvest maturity and storage. Sensory and Nutritive Qualities of Food, 71(3), 204–210. es_ES
dc.description.references Fúster, C., Préstamo, G., & Cano, M. P. (1994). Drip loss, peroxidase and sensory changes in kiwi fruit slices during frozen storage. Journal of the Science of Food and Agriculture, 64, 23–29. es_ES
dc.description.references Guldas, M. (2003). Peeling and the physical and chemical properties of kiwi fruit. Journal of Food Processing Preservation, 27, 271–284. es_ES
dc.description.references Igual, M., Contreras, C., & Martínez-Navarrete, N. (2010). Non-conventional techniques to obtain grapefruit jam. Innovative Food Science and Emerging Technologies, 11, 335–341. es_ES
dc.description.references Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299. es_ES
dc.description.references Jaeger, S. R., Rossiter, K. L., Wismer, W. V., & Harker, F. R. (2003). Consumer-driven product development in the kiwifruit industry. Food Quality and Preference, 14, 187–198. es_ES
dc.description.references Lawless, H., & Heymann, H. (1998). Sensory evaluation of food: Principles and practices. New York: Chapman & Hall. es_ES
dc.description.references MAPA (2010). Plataforma de conocimiento para el medio rural y pesquero. National Agricultural Statistics Database, Spain, Available at: www.mapa.es . Accessed 05 October 2010. es_ES
dc.description.references Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 169–175. es_ES
dc.description.references Mohammadi, A., Rafiee, S., Emam-Djomeh, Z., & Keyhani, A. (2008). Kinetic models for colour change in kiwifruit slices during Hoy Air drying. World Journal of Agricultural Sciences, 4(3), 376–383. es_ES
dc.description.references Moretti, C. L., Mattos, L. M., Machado, C. M. M., & Kluge, R. A. (2007). Physiological and quality attributes associated with different centrifugation times of baby carrots. Horticultura Brasileira, 25, 557–561. es_ES
dc.description.references Nielsen, S. S. (2010). Food analysis laboratory manual. New York: Springer. es_ES
dc.description.references Oraguzie, N., Alspach, P., Volz, R., Whitworz, C., Ranatunga, C., Weskett, R., et al. (2009). Postharvest assessment of fruit quality parameters in apple using both instrument and an expert panel. Posthaverst Biology and Technology., 52, 279–287. es_ES
dc.description.references Pagliarini, E., Laureati, M., & Lavelli, V. (2010). Sensory evaluation of gluten-free breads assessed by a trained panel of celiac assessors. European Food Research and Technology, 231, 37–46. es_ES
dc.description.references Park, E. Y., & Luh, B. S. (1985). Polyphenol oxidase of kiwifruit. Journal of Food Science, 50, 678–684. es_ES
dc.description.references Schubert, H., & Regier, M. (2010). The microwave processing of foods. London: Woodhead. es_ES
dc.description.references Segnini, S., Dejmek, P., & Öste, R. (1999). Relationship between instrumental and sensory analysis of texture and colour of potato chips. Journal of Texture Studies, 30, 677–690. es_ES
dc.description.references Sinija, V. R., & Mishra, H. N. (2011). Fuzzy analysis of sensory data for quality evaluation and ranking of instant green Tea powder and granules. Food Bioprocess Technology, 4, 408–416. es_ES
dc.description.references Soufleros, E. H., Pissa, I., Petridis, D., Lygerakis, M., Mermelas, K., Boukouvalas, G., et al. (2001). Instrumental analysis of volatile and other compounds of Greek kiwi wine; sensory evaluation and optimization of its composition. Analytical, Nutritional and Clinical Methods Section, 75, 487–500. es_ES
dc.description.references Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products-a review. Biosystems Engineering, 98, 1–16. es_ES
dc.description.references Worch, T., Lê, S., & Punter, P. (2010). How reliable are the consumers? Comparison of sensory profiles from consumers and experts. Food Quality and Preference, 21, 309–318. es_ES
dc.description.references Zanoni, B., Lavelli, V., Ambrosoli, R., Garavaglia, L., Minati, J., & Pagliarini, E. (2007). A model to predict shelf-life in air and darkness of cut, ready-to-use, fresh carrots under both isothermal and non-isothermal conditions. Journal of Food Engineering, 79, 586–591. es_ES
dc.description.references Zolfaghari, M., Sahari, M. A., Barzegar, M., & Samadloiy, H. (2010). Physicochemical and enzymatic properties of five kiwifruit cultivars during cold storage. Food Bioprocess Technology, 3, 239–246. es_ES


This item appears in the following Collection(s)

Show simple item record