Mostrar el registro sencillo del ítem
dc.contributor.author | Montalbán Domingo, María Laura | es_ES |
dc.contributor.author | Fernández-Villa, J. A. | es_ES |
dc.contributor.author | Masanet Sendra, Claudio | es_ES |
dc.contributor.author | Real Herráiz, Julia Irene | es_ES |
dc.date.accessioned | 2017-01-10T09:14:11Z | |
dc.date.available | 2017-01-10T09:14:11Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0954-4097 | |
dc.identifier.uri | http://hdl.handle.net/10251/76523 | |
dc.description.abstract | The formula derived from Zimmermann s theory is commonly used in railway track design. However, this formula depends on variables such as the ballast coefficient, which are difficult to determine. In recent years, numerical models have been widely used as they allow the track to be studied as a complete system in which the input variables are known. However, the computation time of numerical models is often very large. This paper presents a pre-design tool that is based on an artificial neural network (ANN). This tool permits the efficient determination of the independent variables of the model, which depend on the track characteristics, the height of the embankment and the quality of the material used to form the embankment. The main advantage of the ANN model is the optimization of the design process, providing a pre-design scenario in which the independent variables are calculated on the basis of the vertical displacement of the rail top, which is the output of the ANN. This leads to significant savings in the computational time required to solve the finite element model. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE PUBLICATIONS LTD | es_ES |
dc.relation.ispartof | Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Railways | es_ES |
dc.subject | Track design | es_ES |
dc.subject | Railway track | es_ES |
dc.subject | Research and development | es_ES |
dc.subject | Vertical stiffness | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.title | An artificial neural network model as a preliminary track design tool | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0954409715576366 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports | es_ES |
dc.description.bibliographicCitation | Montalban Domingo, ML.; Fernández-Villa, JA.; Masanet Sendra, C.; Real Herráiz, JI. (2015). An artificial neural network model as a preliminary track design tool. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit. 230(4):1105-1117. doi:10.1177/0954409715576366 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.description.upvformatpinicio | 1105 | es_ES |
dc.description.upvformatpfin | 1117 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 230 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 307246 | es_ES |