- -

Análisis regional de frecuencia de precipitaciones extremas en el Norte de Mozambique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis regional de frecuencia de precipitaciones extremas en el Norte de Mozambique

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Álvarez, M. es_ES
dc.contributor.author Puertas, J. es_ES
dc.contributor.author Peña, E. es_ES
dc.coverage.spatial east=39.32062410000003; north=-12.3335474; name=Cabo Delgado, Moçambic
dc.date.accessioned 2017-01-20T12:29:11Z
dc.date.available 2017-01-20T12:29:11Z
dc.date.issued 2016-01-29
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/77099
dc.description.abstract [EN] Extreme precipitation events that occur over internal basins of Cabo Delgado (Northern Mozambique) often result in the occurrence of flood events with associated loss of life and infrastructure. This paper presents a study of regional frequency analysis of maximum daily precipitations based on the index flood procedure with estimated parameters by L-moments approach. Observed annual maximum daily precipitation series of 12 stations with records of more than 20 years were analyzed. The discordancy and heterogeneity measures based on the L-moments suggest that the region can be considered as homogeneous. Among the candidate distributions analyzed Monte Carlo simulations identified the Generalized Logistic distribution function as the best regional fit for the region. The achieved results will be useful in hydrologic and hydraulic studies related to floods and floodplain delineation in the region. es_ES
dc.description.abstract [ES] Las precipitaciones extremas que tienen lugar sobre las cuencas internas de Cabo Delgado (Norte de Mozambique) generan eventos de avenidas que provocan anualmente inundaciones que causan cuantiosas pérdidas materiales, económicas y vidas humanas. Se presenta un estudio de análisis regional de frecuencia de precipitaciones máximas basado en el método del índice de avenida con sus parámetros estimados por los L-momentos. Se ha contado con un total de 12 estaciones pluviométricas con registros de observaciones de más de 20 años. Las medidas de discordancia y heterogeneidad basadas en los L-momentos revelaron que la región de estudio puede ser considerada homogénea. De entre las funciones de distribución candidatas analizadas las simulaciones de Monte Carlo identificaron la función de distribución Logística Generalizada como la de mejor ajuste a escala regional. Los resultados obtenidos pueden ser de utilidad en estudios relacionados con las avenidas y delimitación de zonas inundables de la región es_ES
dc.description.sponsorship Los autores desean expresar su agradecimiento a la Xunta de Galicia y Cooperación Galega por la financiación de este estudio que ha sido realizado en el marco del proyecto: “Análise de mapas de inundação e redução de desastres nas bacias internas de Cabo Delgado. Caracterização e fortalecimento institucional em ARA-Norte”. Asimismo agradecen la colaboración prestada por los técnicos del Departamento Técnico de la Administración Regional de Aguas del Norte de Mozambique (ARA-Norte).
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Ingeniería del Agua
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Regional frequency analysis es_ES
dc.subject L-moments es_ES
dc.subject Index flood es_ES
dc.subject Análisis regional de frecuencia es_ES
dc.subject Índice de avenida es_ES
dc.subject L-momentos es_ES
dc.subject Inundaciones es_ES
dc.title Análisis regional de frecuencia de precipitaciones extremas en el Norte de Mozambique es_ES
dc.title.alternative Regional frequency analysis of extremes precipitations in Northern of Mozambique es_ES
dc.type Artículo es_ES
dc.date.updated 2017-01-20T12:21:45Z
dc.identifier.doi 10.4995/ia.2016.4176
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Álvarez, M.; Puertas, J.; Peña, E. (2016). Análisis regional de frecuencia de precipitaciones extremas en el Norte de Mozambique. Ingeniería del Agua. 20(1):28-42. https://doi.org/10.4995/ia.2016.4176 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2016.4176 es_ES
dc.description.upvformatpinicio 28 es_ES
dc.description.upvformatpfin 42 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 1
dc.identifier.eissn 1886-4996
dc.contributor.funder Xunta de Galicia es_ES
dc.description.references Chiew, F.H., Siriwardena, L. (2005). Trend/Change detection software. USER GUIDE. CRC for Catchment Hydrology, Australia. es_ES
dc.description.references Dalrymple, T. (1960). Flood frequency analysis. USGS Water Supply Paper 1543-A. es_ES
dc.description.references Fisz, M. (1963). Probability Theory and Mathematical Statistics. John Wiley, New York. es_ES
dc.description.references Grayson, R.B., Argent R.M., Nathan, R.J., McMahon, T.A., Mein, R. (1996). Hydrological Recipes: Estimation Techniques in Australian es_ES
dc.description.references Hydrology. Cooperative Research Centre for Catchment Hydrology, Australia. es_ES
dc.description.references Greenwood, J.A., Landwehr, J.M., Matalas, N.C., Wallis, J.R. (1979). Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research, 15(5), 1049-1054. doi:10.1029/WR015i005p01049 es_ES
dc.description.references Gumbel, E.J. (1958). Statistics of extremes. Columbia University Press, New York. es_ES
dc.description.references Guttman, N.B. (1993). The use of L-moments in the determination of regional precipitation climates. Journal of Climate, 6, 2309-2325. doi:10.1175/1520-0442(1993)006<2309:TUOLMI>2.0.CO;2 es_ES
dc.description.references Guttman, N. B., Hosking, J. R., Wallis, J. R. (1997). Regional precipitation quantile values for the continental U.S. computed from L-moments. Journal of Climate, 6, 2326-2340. doi:10.1175/1520-0442(1993)006<2326:RPQVFT>2.0.CO;2 es_ES
dc.description.references Hirsch, R.M., Slack, J.R., Smith, R.A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources. Research, 18(1), 107-121. doi:10.1029/WR018i001p00107 es_ES
dc.description.references Hosking, J. R. (1986). The theory of probability weighted moments. Research Report RC 12210, IBM Research Division. Yorktown Heights, NY. es_ES
dc.description.references Hosking, J.R. (1988). The four-parameter kappa distribution. Research Report RC 13412, IBM Research Division, Yorktown Heights, NY. es_ES
dc.description.references Hosking, J. R. (1990). L-moments: Analysis and Estimation of Distributions using Linear Combinations of order Statistics. Journal of Royal Statistical Society, 52(1), 105-124. es_ES
dc.description.references Hosking, J.R. (1994). The four-parameter kappa distribution. IBM Journal of Research and Development,38(3), 251-258. doi:10.1147/rd.383.0251 es_ES
dc.description.references Hosking, J.R., Wallis, J.R. (1997). Regional frequency analysis: an approach based on L-moments. Cambridge University Press. doi:10.1017/cbo9780511529443 es_ES
dc.description.references Hosking, J.R. (2014a). Regional frequency analysis using L-moments. R package: lmomRFA, versión 3.0: July, 2, 2014. (http://cran.r-project.org/web/packages/lmomRFA/index.html). es_ES
dc.description.references Hosking, J.R. (2014b). L-moments. R package: lmom, versión 2.4: July, 2, 2014. (http://cran.r-project.org/web/packages/lmom/index.html) es_ES
dc.description.references Jenkinson, A.F. (1955). The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements. Quaterly Journal of the Royal Meteorological Society, 87, 158. doi:10.1002/qj.49708134804 es_ES
dc.description.references Jenkins, G.M., Watts, D.G. (1968). Spectral analysis and its applications. Holden-Day, San Francisco, California. es_ES
dc.description.references Kendall, M.G. (1975). Rank Correlation Methods. 4th Edn., Charles Griffin, London. es_ES
dc.description.references Kundzewicz, Z.W., Robson, A. (2000). Detecting Trend and Other Changes in Hydrological Data. World Climate Program - Water, WMO/UNESCO, WCDMP-45, WMO/TD 1013, Geneva. es_ES
dc.description.references Madsen, H., Pearson, C.P., Rosbjerg, D. (1997). Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events 2. Regional modeling. Water Resources Research, 33(4), 759-769. doi:10.1029/96WR03849 es_ES
dc.description.references Mann, H.B. (1945). Non-parametric test against trend. Econometrica, 13(3), 245-259. doi:10.2307/1907187 es_ES
dc.description.references Meacham, I. (1968). Correlation in sequential data three sample indicators. Civil Eng. Trans. Inst. Eng. Aust., 10, 225-228 es_ES
dc.description.references Norbiato, D., Borga, M., Sangati, M., Zanon, F. (2007). Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. Journal of Hydrology, 345(3-4), 149-166. doi:10.1016/j.jhydrol.2007.07.009 es_ES
dc.description.references Ngongondo, C.N., Chong-Yu, X., Lena, M.T., Berhanu, A., Tobias, C. (2011). Regional frequency analysis of rainfall extremes in Southern Malawi using the index rainfall and L-moments approaches. Stochastic Environmental Research and Risk Assessment, 25(7), 939-955. doi:10.1007/s00477-011-0480-x es_ES
dc.description.references Organización Meteorológica Mundial, (1994). Guía de prácticas hidrológicas. Quinta edición, OMM-Nº 168, Ginebra. es_ES
dc.description.references Parida, B.P., Moalafhi, D.B. (2008) Regional rainfall frequency analysis for Botswana using L-Moments and radial basis function network. Physics and Chemistry of the Earth, 33(8-13), 614-620. doi:10.1016/j.pce.2008.06.011 es_ES
dc.description.references Pearson, C.P., McKerchar, A.I., Woods, R.A. (1991). Regional flood frequency análisis of western Australian data using L-moments. International Hydrology and Water Resources Symposium, Perth, Australia, 631-632. es_ES
dc.description.references Siegel S., Castellan N.J. (1988). Non-parametric Statistics for the Behavioural Sciences. McGraw-Hill, New York, USA. es_ES
dc.description.references Smithers, J.C., Schulze, R.E. (2001). A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. Journal of Hydrology, 241(1-2), 41-52. doi:10.1016/S0022-1694(00)00374-7 es_ES
dc.description.references Student, (1908). The probable error of a mean. Biometrika,6(1), 1-25. doi:10.1093/biomet/6.1.1 es_ES
dc.description.references Vogel, R.M., Fennessey, N.M., 1993. L-moment diagrams should replace product moment diagrams. Water Resources Research,29(6), 1745-1754). doi:10.1029/93WR00341 es_ES
dc.description.references Vogel, R.M., Thomas, W.O., McMahon, T.A. (1993). Flood-flow frequency model selection in southwestern United States. Journal of Water Resources Planning and Management, 119(3), 353-366. doi:10.1061/(ASCE)0733-9496(1993)119:3(353) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem