- -

Cronobacter sakazakii inactivation by microwave processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cronobacter sakazakii inactivation by microwave processing

Mostrar el registro completo del ítem

Pina Pérez, MC.; Benlloch Tinoco, M.; Rodrigo Aliaga, MD.; Martínez López, A. (2014). Cronobacter sakazakii inactivation by microwave processing. Food and Bioprocess Technology. 7(3):821-828. https://doi.org/10.1007/s11947-013-1063-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/77415

Ficheros en el ítem

Metadatos del ítem

Título: Cronobacter sakazakii inactivation by microwave processing
Autor: Pina Pérez, Maria Consuelo Benlloch Tinoco, María Rodrigo Aliaga, María Dolores Martínez López, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
Nowadays, current practices at home and childcare settings involved MW heating after powder infant formula milk reconstitution. Microwave (MW) effectiveness for Cronobacter sakazakii inactivation in reconstituted ...[+]
Palabras clave: Microwave processing , Cronobacter sakazakii , Refrigeration , Sublethal damage , Reconstituted powder infant formula milk
Derechos de uso: Cerrado
Fuente:
Food and Bioprocess Technology. (issn: 1935-5130 ) (eissn: 1935-5149 )
DOI: 10.1007/s11947-013-1063-2
Editorial:
Springer Verlag (Germany)
Versión del editor: https://dx.doi.org/10.1007/s11947-013-1063-2
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2010-22206-C02-01/ES/COMBINACION DE INGREDIENTES NATURALES Y TECNOLOGIAS NO TERMICAS EN LA ESTABILIZACION DE BEBIDAS DE ORIGEN VEGETAL. ASPECTOS MICROBIOLOGICOS, NUTRICIONALES Y FISICO-QUIMICOS/
info:eu-repo/grantAgreement/GVA//GV%2F2010%2F064/
Agradecimientos:
The authors are grateful to the Ministry of Economy and Competitiveness for providing financial support by means of CYCIT project AGL2010-22206-C02, and to Generalitat Valenciana I+D+I emergent research groups financial ...[+]
Tipo: Artículo

References

Al-Holy, M. A., Lin, M., Abu-Ghoush, M. M., Al-Qadiri, H. M., & Rasco, B. A. (2009). Thermal resistance, survival and inactivation of Enterobacter sakazakii (Cronobacter spp.) in powdered and reconstituted infant formula. Journal of Food Safety, 29, 287–14.

Arroyo, C., Condón, S., & Pagán, R. (2009). Thermological characterization of Enterobacter sakazakii. International Journal of Food Microbiology, 136, 110–118.

Arroyo, C., Somolinos, M., Cebrián, G., Condón, S., & Pagán, R. (2010). Pulsed electric fields cause sublethal injuries in the outer membrane of Enterobacter sakazakii facilitating the antimicrobial activity of citral. Letters in Applied Microbiology, 51, 525–531. [+]
Al-Holy, M. A., Lin, M., Abu-Ghoush, M. M., Al-Qadiri, H. M., & Rasco, B. A. (2009). Thermal resistance, survival and inactivation of Enterobacter sakazakii (Cronobacter spp.) in powdered and reconstituted infant formula. Journal of Food Safety, 29, 287–14.

Arroyo, C., Condón, S., & Pagán, R. (2009). Thermological characterization of Enterobacter sakazakii. International Journal of Food Microbiology, 136, 110–118.

Arroyo, C., Somolinos, M., Cebrián, G., Condón, S., & Pagán, R. (2010). Pulsed electric fields cause sublethal injuries in the outer membrane of Enterobacter sakazakii facilitating the antimicrobial activity of citral. Letters in Applied Microbiology, 51, 525–531.

Arroyo, C., Gayán, E., Pagán, R., & Condón, R. (2012). UV-C Inactivation of Cronobacter sakazakii. Foodborne Pathogens and Disease, 9(10), 1–8.

Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing, 46, 584–602.

Barbosa-Cánovas, G. V., & Bermudez-Aguirre D. (2010). Pasteurization of milk with pulsed electric fields. In M. Griffiths (Ed.), Improving the safety and quality of milk, vol. 1. Cambridge, UK: Woodhead Publishing.

CAC (Codex Alimentarius Comission). (2004). Report of the 36th session of the Codex Committee on Food Hygiene ALINORM 04/27/13. Appendix III: Definition to be included in the procedure manual

Cañumir, J. A., Celis, J. E., de Brujin, J., & Vidal, L. V. (2002). Pasteurization of Apple Juice by using Microwaves. Lebensm-Wiss. u -Technology, 35, 389–392.

Cha-um, W., Rattanadecho, P., & Pakdee, W. (2011). Experimental and numerical analysis of Microwave Heating of Water and Oil using a rectangular wave guide: Influence of sample sizes, positions, and microwave power. Food Bioprocess and Technology, 4, 544–558.

Carletti, C, & Cattaneo, A. (2008). A: Home preparation of powdered infant formula: is it safe? Acta Paediatrica, 97, 1131–2.

Dixon, J. J., Burd, D. A. R., & Roberts, D. G. V. O. (1997). Severe burns resulting from an exploding teat on a bottle of infant formula milk heated in a microwave oven. Burns, 23(3), 268–269.

European Comission Regulation (EC). N0 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs (OJ L 338, 22.12.2005, p.1).

Edelson-Mammel, S. G., & Buchanan, R. L. (2004). Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. Journal of Food Protection, 67, 60–63.

ESPGHAN Committee on Nutrition. (2004). Preparation and Handling of powdered Infant Formula: A Commentary by the ESPGHAN Committee on Nutrition. Journal of Pediatrics Gastroenterology and Nutrition, 39, 320–2.

FAO/WHO (2004). Food and Agriculture Organization/World Health Organization activities on microbiological risk assessment. Enterobacter sakazakii and other microorganisms in powdered infant formula. Meeting report. Microbiological risk assessment series: 6.

FAO/WHO. (2006). Comisión del Codex Alimentarius. Anteproyecto de código de prácticas de higiene para la fórmula en polvo para lactantes y niños pequeños en el trámite 3. CX/FH 06/38/7.

Friedemann, M. (2007). Review. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). International Journal of Food Microbiology, 116, 1–10.

Forsythe, S. J. (2002). The microbiological risk assessment of food. Chapter 3. Risk Analysis. Oxford: Blackwell Publishing.

Fujikawa, H., Ushioda, H., & Kudo, Y. (1992). Kinetics of Escherichia coli destruction by microwave irradiation. Applied and Environmental Microbiology, 58(3), 920–924.

Hebbar, H.U., & Rastogi, N.K. (2012). Chapter 12—Microwave Heating of Fluid Foods. In: Novel Thermal and Non-Thermal Technologies for Fluid Foods, (pp. 369−409).

Heddleson, R. A., & Doores, S. (1994). Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens—a review. Journal of Food Protection, 57(11), 1025–1037.

Huang, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78, 687–692.

IDF. (1994). Recommendations for the Hygienic Mnufacture of Milk and Milk based products. Document No. 292 International Dairy Federation, Brussels.

Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.

Iversen, C., Lane, M., & Forsythe, S. J. (2004). The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Letters in Applied Microbiology, 38, 378–382.

Jang, H. I., & Rhee M. S. (2009). Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. (Enterobacter sakazakii) in reconstituted infant formula and determination of injury by flow cytometry. International Journal of Food Microbiology, 133, 113–120.

Kandhai, M. C., Reij, M. W., Grognou, C., van Shothorst, M., Gorris, L. G. M., & Zwietering, M. H. (2006). Effects of Preculturing conditions on lag time and specific growth rate of Enterobacter sakazakii in reconstituted powdered infant formula. Applied and Environmental Microbiology, 72(4), 2721–2729.

Kim, S. H., & Park, J. H. (2007). Thermal resistance and inactivation of Enterobacter sakazakii isolates during rehydration of powdered infant formula. Journal of Microbiology and Biotechnology, 17, 364–368.

Kim, J. B., Park, Y. B., Lee, M. J., Kim, K. C., Huh, J. W., Kim, D. H., et al. (2008). Effect of hot water and microwave heating on the inactivation of Enterobacter sakazakii in reconstituted powdered infant formula and sunsik. Journal of Food Hygiene and Safety, 23(2), 157–162.

Kindle, G., Busse, A., Kampa, D., Meyer-Koenig, U., & Daschner, F. D. (1996). Killing activity of microwaves in milk. Journal of Hospital Infection, 33, 273–278.

Latorre, M. E., Bonelli, P. R., Rojas, A. M., & Gerschenson, L. N. (2012). Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality. Journal of Food Engineering, 109, 676–684.

Lau, M. H., & Tang, J. (2002). Pasteurization of pickled asparagus using 915 MHz microwaves. Journal of Food Engineering, 51(4), 283–290.

Matsui, K. N., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88, 169–176.

Nazarowec-White, M., & Farber, J. M. (1997). Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Letters in Applied Microbiology, 24, 9–13.

Nicolaï, B. (1998). Optimal control of microwave combination ovens for food heating. 3rd Karlsruhe Nutrition Symposium. European Research towards Safer and Better Food. Review and Transfer Congress. Proceedings Part 2 Edited by V. Gaukeland W.E.L. Spieß. pp. 328–332.

Ohlsson, T. (2003). Domestic use of microwave ovens. Cooking, 1627–1633.

Osaili, T., & Forsythe, S. (2009). Dessication resistance and persistance of Cronobacter species in infant formula. International Journal of Food Microbiology, 136(2), 214–220.

Osaili, T. M., Shaker, R. R., Al-Haddaq, M. S., Al-Nabulsi, A. A., & Holley, R. A. (2009). Heat resistance of Cronobacter species (Enterobacter sakazakii) in milk and special feeding formula. Journal of Applied Microbiology, 107, 928–935.

Pina-Pérez, M. C., Rodrigo, D., & Martinez, A. (2009). Sub-lethal damage in Cronobacter sakazakii subsp. Sakazakii cells after different pulsed electric field treatments in infant formula milk. Food Control, 20, 1145–1150.

Puczynski, M., Rademaker, D., & Gatson, R. L. (1983). Burn injury related to the improper use of a microwave oven. Pediatrics, 72(5), 714–715.

Rodrigo, D., Zúñiga, M., Rivas, A., & Martinez, A. (2007). Adaptation potential of micro-organisms treated by pulsed electric fields. Food preservation by pulsed electric fields: From research to application. Edited by H L M Lelieveld, formerly Unilever R&D, S Notermans, Foundation Food Micro & Innovation and S W H de Haan, Technical University of Delft, The Netherlands.

Salazar-González, C., San Martín-González, M. F., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food Bioprocess and Technology, 5, 31–46.

Shaker, R. R., Osaili, T. M., All-Hasan, A. S., Ayyash, M. M., Forsythe, S. J. (2008). Effect of desiccation, starvation, heat and cold stresses on the thermal resistance of Enterobacter sakazakii in rehydrated infant milk formula. Journal of Food Science, 73, 354–359.

Sieber, R., Eberhard, P., & Gallmann, P. U. (1996). Heat treatment of milk in domestic microwave ovens. International Dairy Journal, 6, 213–246.

Simmons, B. P., Gelfand, M. S., Haas, M., Metts, L., & Ferguson, J. (1989). Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infection Control and Hospital Epidemiology, 10, 398–401.

Swain, M., & James S. (2010). The microwave processing of foods. Chapter 12. Factors that affect heating performance and development of heating/cooking in domestic and commercial microwave ovens. (pp. 221–241) Woodhead Publishing in Food Science and Technology. Part III. Measurement and process control

Tang, Z., Mikhaylenko, G., Liu, F., Mah, J. H., Pandit, R., Younce, F., et al. (2008). Microwave sterilization of sliced beef in gravy 7-oz trays. Journal of Food Engineering, 89(4), 375–383.

Thompson, J. S., & Thompson, A. (1990). In-home pasteurization of raw goat’s milk by microwave treatment. International Journal of Food Microbiology, 10, 59–64.

Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—a review. Food Bioprocess and Technology, 3, 161–171.

William, M. D., Sando, C., Keith, M. D., Gallaher, J., Bradley, M. D., & Rodgers, M. (1984). Risk factors for microwaves injuries in infants. Journal of Pediatrics, 105(6), 864–867.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem