- -

Numerical approximations of second-order matrix differential equations using higher-degree splines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical approximations of second-order matrix differential equations using higher-degree splines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Defez Candel, Emilio es_ES
dc.contributor.author Tung ., Michael Ming-Sha es_ES
dc.contributor.author Solis Lozano, Francisco Javier es_ES
dc.contributor.author Ibáñez González, Jacinto Javier es_ES
dc.date.accessioned 2017-02-07T15:44:09Z
dc.date.available 2017-02-07T15:44:09Z
dc.date.issued 2015
dc.identifier.issn 0308-1087
dc.identifier.uri http://hdl.handle.net/10251/77725
dc.description.abstract Many studies of mechanical systems in engineering are based on second-order matrix models. This work discusses the second-order generalization of previous research on matrix differential equations dealing with the construction of approximate solutions for non-stiff initial problems Y 00(x) = f(x, Y (x), Y 0 (x)) using higher-degree matrix splines without any dimensional increase. An estimation of the approximation error for some illustrative examples are presented by using Mathematica. Several MatLab functions have also been developed, comparing, under equal conditions, accuracy and execution times with built-in MatLab functions. Experimental results show the advantages of solving the above initial problem by using the implemented MatLab functions. es_ES
dc.description.sponsorship The authors wish to thank for financial support by the Universidad Politecnica de Valencia [grant number PAID-06-11-2020]. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Linear and Multilinear Algebra es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Matrix models es_ES
dc.subject Second-order matrix differential equations es_ES
dc.subject Matrix splines es_ES
dc.subject Approximations for non-stiff initial problems es_ES
dc.subject Extended MatLab functions es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Numerical approximations of second-order matrix differential equations using higher-degree splines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/03081087.2013.873427
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-2020/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Defez Candel, E.; Tung ., MM.; Solis Lozano, FJ.; Ibáñez González, JJ. (2015). Numerical approximations of second-order matrix differential equations using higher-degree splines. Linear and Multilinear Algebra. 63(3):472-489. https://doi.org/10.1080/03081087.2013.873427 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/03081087.2013.873427 es_ES
dc.description.upvformatpinicio 472 es_ES
dc.description.upvformatpfin 489 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 63 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 298933 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Loscalzo, F. R., & Talbot, T. D. (1967). Spline Function Approximations for Solutions of Ordinary Differential Equations. SIAM Journal on Numerical Analysis, 4(3), 433-445. doi:10.1137/0704038 es_ES
dc.description.references Al-Said, E. A. (2001). The use of cubic splines in the numerical solution of a system of second-order boundary value problems. Computers & Mathematics with Applications, 42(6-7), 861-869. doi:10.1016/s0898-1221(01)00204-8 es_ES
dc.description.references Al-Said, E. A., & Noor, M. A. (2003). Cubic splines method for a system of third-order boundary value problems. Applied Mathematics and Computation, 142(2-3), 195-204. doi:10.1016/s0096-3003(02)00294-1 es_ES
dc.description.references Kadalbajoo, M. K., & Patidar, K. C. (2002). Numerical solution of singularly perturbed two-point boundary value problems by spline in tension. Applied Mathematics and Computation, 131(2-3), 299-320. doi:10.1016/s0096-3003(01)00146-1 es_ES
dc.description.references Micula, G., & Revnic, A. (2000). An implicit numerical spline method for systems for ODEs. Applied Mathematics and Computation, 111(1), 121-132. doi:10.1016/s0096-3003(98)10111-x es_ES
dc.description.references Defez, E., Soler, L., Hervás, A., & Santamaría, C. (2005). Numerical solution ofmatrix differential models using cubic matrix splines. Computers & Mathematics with Applications, 50(5-6), 693-699. doi:10.1016/j.camwa.2005.04.012 es_ES
dc.description.references Defez, E., Hervás, A., Soler, L., & Tung, M. M. (2007). Numerical solutions of matrix differential models using cubic matrix splines II. Mathematical and Computer Modelling, 46(5-6), 657-669. doi:10.1016/j.mcm.2006.11.027 es_ES
dc.description.references Ascher, U., Pruess, S., & Russell, R. D. (1983). On Spline Basis Selection for Solving Differential Equations. SIAM Journal on Numerical Analysis, 20(1), 121-142. doi:10.1137/0720009 es_ES
dc.description.references Brunner, H. (2004). On the Divergence of Collocation Solutions in Smooth Piecewise Polynomial Spaces for Volterra Integral Equations. BIT Numerical Mathematics, 44(4), 631-650. doi:10.1007/s10543-004-3828-5 es_ES
dc.description.references Tung, M. M., Defez, E., & Sastre, J. (2008). Numerical solutions of second-order matrix models using cubic-matrix splines. Computers & Mathematics with Applications, 56(10), 2561-2571. doi:10.1016/j.camwa.2008.05.022 es_ES
dc.description.references Defez, E., Tung, M. M., Ibáñez, J. J., & Sastre, J. (2012). Approximating and computing nonlinear matrix differential models. Mathematical and Computer Modelling, 55(7-8), 2012-2022. doi:10.1016/j.mcm.2011.11.060 es_ES
dc.description.references Claeyssen, J. R., Canahualpa, G., & Jung, C. (1999). A direct approach to second-order matrix non-classical vibrating equations. Applied Numerical Mathematics, 30(1), 65-78. doi:10.1016/s0168-9274(98)00085-3 es_ES
dc.description.references Froese, C. (1963). NUMERICAL SOLUTION OF THE HARTREE–FOCK EQUATIONS. Canadian Journal of Physics, 41(11), 1895-1910. doi:10.1139/p63-189 es_ES
dc.description.references Marzulli, P. (1991). Global error estimates for the standard parallel shooting method. Journal of Computational and Applied Mathematics, 34(2), 233-241. doi:10.1016/0377-0427(91)90045-l es_ES
dc.description.references Shore, B. W. (1973). Comparison of matrix methods applied to the radial Schrödinger eigenvalue equation: The Morse potential. The Journal of Chemical Physics, 59(12), 6450-6463. doi:10.1063/1.1680025 es_ES
dc.description.references ZHANG, J. F. (2002). OPTIMAL CONTROL FOR MECHANICAL VIBRATION SYSTEMS BASED ON SECOND-ORDER MATRIX EQUATIONS. Mechanical Systems and Signal Processing, 16(1), 61-67. doi:10.1006/mssp.2001.1441 es_ES
dc.description.references Flett, T. M. (1980). Differential Analysis. doi:10.1017/cbo9780511897191 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem