- -

Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Massó, Xavier es_ES
dc.contributor.author Serra-Añó P. es_ES
dc.contributor.author Gonzalez, LM es_ES
dc.contributor.author Ye Lin, Yiyao es_ES
dc.contributor.author Prats-Boluda, Gema es_ES
dc.contributor.author Garcia Casado, Francisco Javier es_ES
dc.date.accessioned 2017-02-14T08:34:30Z
dc.date.available 2017-02-14T08:34:30Z
dc.date.issued 2015-10
dc.identifier.issn 1362-4393
dc.identifier.uri http://hdl.handle.net/10251/77890
dc.description.abstract Objectives: The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). Setting: The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. Methods: A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. Results: We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). Conclusions: With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (490%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI. es_ES
dc.description.sponsorship X Garcia-Masso gratefully acknowledges the support of the University of Valencia under project UV-INV-PRECOMP13-115364. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Spinal Cord es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ENERGY-EXPENDITURE es_ES
dc.subject ACTIVITY RECOGNITION es_ES
dc.subject ACTIVITY MONITOR es_ES
dc.subject PEOPLE es_ES
dc.subject PARTICIPATION es_ES
dc.subject PARAPLEGIA es_ES
dc.subject VALIDITY es_ES
dc.subject VALUES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/sc.2015.81
dc.relation.projectID info:eu-repo/grantAgreement/UV//UV-INV-PRECOMP13-115364/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation García-Massó, X.; Serra-Añó P.; Gonzalez, L.; Ye Lin, Y.; Prats-Boluda, G.; Garcia Casado, FJ. (2015). Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers. Spinal Cord. 53(10):772-777. https://doi.org/10.1038/sc.2015.81 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi. org/10.1038/sc.2015.81 es_ES
dc.description.upvformatpinicio 772 es_ES
dc.description.upvformatpfin 777 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 292056 es_ES
dc.identifier.eissn 1476-5624
dc.contributor.funder Universitat de València es_ES
dc.description.references Buchholz AC, Martin Ginis KA, Bray SR, Craven BC, Hicks AL, Hayes KC et al. Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab 2009; 34: 640–647. es_ES
dc.description.references Hetz SP, Latimer AE, Buchholz AC, Martin Ginis KA . Increased participation in activities of daily living is associated with lower cholesterol levels in people with spinal cord injury. Arch Phys Med Rehabil 2009; 90: 1755–1759. es_ES
dc.description.references Manns PJ, Chad KE . Determining the relation between quality of life, handicap, fitness, and physical activity for persons with spinal cord injury. Arch Phys Med Rehabil 1999; 80: 1566–1571. es_ES
dc.description.references Serra-Añó P, Pellicer-Chenoll M, García-Massó X, Morales J, Giner-Pascual M, González L-M . Effects of resistance training on strength, pain and shoulder functionality in paraplegics. Spinal Cord 2012; 50: 827–831. es_ES
dc.description.references Slater D, Meade MA . Participation in recreation and sports for persons with spinal cord injury: review and recommendations. NeuroRehabilitation 2004; 19: 121–129. es_ES
dc.description.references Lee M, Zhu W, Hedrick B, Fernhall B . Determining metabolic equivalent values of physical activities for persons with paraplegia. Disabil Rehabil 2010; 32: 336–343. es_ES
dc.description.references Lee M, Zhu W, Hedrick B, Fernhall B . Estimating MET values using the ratio of HR for persons with paraplegia. Med Sci Sports Exerc 2010; 42: 985–990. es_ES
dc.description.references Hayes AM, Myers JN, Ho M, Lee MY, Perkash I, Kiratli BJ . Heart rate as a predictor of energy expenditure in people with spinal cord injury. J Rehabil Res Dev 2005; 42: 617–624. es_ES
dc.description.references Washburn RA, Zhu W, McAuley E, Frogley M, Figoni SF . The physical activity scale for individuals with physical disabilities: development and evaluation. Arch Phys Med Rehabil 2002; 83: 193–200. es_ES
dc.description.references Ginis KAM, Latimer AE, Hicks AL, Craven BC . Development and evaluation of an activity measure for people with spinal cord injury. Med Sci Sports Exerc 2005; 37: 1099–1111. es_ES
dc.description.references Khan AM, Lee Y-K, Lee S, Kim T-S . Accelerometer’s position independent physical activity recognition system for long-term activity monitoring in the elderly. Med Biol Eng Comput 2010; 48: 1271–1279. es_ES
dc.description.references Khan AM, Lee Y-K, Lee SY, Kim T-S . A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans Inf Technol Biomed Publ 2010; 14: 1166–1172. es_ES
dc.description.references Liu S, Gao RX, John D, Staudenmayer J, Freedson PS . SVM-based multi-sensor fusion for free-living physical activity assessment. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc 2011; 2011: 3188–3191. es_ES
dc.description.references Liu S, Gao RX, John D, Staudenmayer JW, Freedson PS . Multisensor data fusion for physical activity assessment. IEEE Trans Biomed Eng 2012; 59: 687–696. es_ES
dc.description.references Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P . An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 2009; 107: 1300–1307. es_ES
dc.description.references Trost SG, Wong W-K, Pfeiffer KA, Zheng Y . Artificial neural networks to predict activity type and energy expenditure in youth. Med Sci Sports Exerc 2012; 44: 1801–1809. es_ES
dc.description.references David Apple MD . Pain above the injury level. Top Spinal Cord Inj Rehabil 2001; 7: 18–29. es_ES
dc.description.references Subbarao JV, Klopfstein J, Turpin R . Prevalence and impact of wrist and shoulder pain in patients with spinal cord injury. J Spinal Cord Med 1995; 18: 9–13. es_ES
dc.description.references Postma K, van den Berg-Emons HJG, Bussmann JBJ, Sluis TAR, Bergen MP, Stam HJ . Validity of the detection of wheelchair propulsion as measured with an Activity Monitor in patients with spinal cord injury. Spinal Cord 2005; 43: 550–557. es_ES
dc.description.references Hiremath SV, Ding D, Farringdon J, Vyas N, Cooper RA . Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury. Spinal Cord 2013; 51: 705–709. es_ES
dc.description.references Itzkovich M, Gelernter I, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC et al. The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil 2007; 29: 1926–1933. es_ES
dc.description.references García-Massó X, Serra-Añó P, García-Raffi LM, Sánchez-Pérez EA, López-Pascual J, Gonzalez LM . Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheelchair users with spinal cord injury. Spinal Cord 2013; 51: 898–903. es_ES
dc.description.references Preece SJ, Goulermas JY, Kenney LPJ, Howard D . A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng 2009; 56: 871–879. es_ES
dc.description.references Hurd WJ, Morrow MM, Kaufman KR . Tri-axial accelerometer analysis techniques for evaluating functional use of the extremities. J Electromyogr Kinesiol 2013; 23: 924–929. es_ES
dc.description.references Teixeira FG, Jesus IRT, Mello RGT, Nadal J . Cross-correlation between head acceleration and stabilograms in humans in orthostatic posture. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc 2012; 2012: 3496–3499. es_ES
dc.description.references Hastie T, Tibshirani R, Friedman J . The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer: New York, NY. 2009. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem