Mostrar el registro sencillo del ítem
dc.contributor.author | García-Massó, Xavier | es_ES |
dc.contributor.author | Serra-Añó P. | es_ES |
dc.contributor.author | Gonzalez, LM | es_ES |
dc.contributor.author | Ye Lin, Yiyao | es_ES |
dc.contributor.author | Prats-Boluda, Gema | es_ES |
dc.contributor.author | Garcia Casado, Francisco Javier | es_ES |
dc.date.accessioned | 2017-02-14T08:34:30Z | |
dc.date.available | 2017-02-14T08:34:30Z | |
dc.date.issued | 2015-10 | |
dc.identifier.issn | 1362-4393 | |
dc.identifier.uri | http://hdl.handle.net/10251/77890 | |
dc.description.abstract | Objectives: The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). Setting: The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. Methods: A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. Results: We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). Conclusions: With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (490%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI. | es_ES |
dc.description.sponsorship | X Garcia-Masso gratefully acknowledges the support of the University of Valencia under project UV-INV-PRECOMP13-115364. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Spinal Cord | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ENERGY-EXPENDITURE | es_ES |
dc.subject | ACTIVITY RECOGNITION | es_ES |
dc.subject | ACTIVITY MONITOR | es_ES |
dc.subject | PEOPLE | es_ES |
dc.subject | PARTICIPATION | es_ES |
dc.subject | PARAPLEGIA | es_ES |
dc.subject | VALIDITY | es_ES |
dc.subject | VALUES | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/sc.2015.81 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UV//UV-INV-PRECOMP13-115364/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | García-Massó, X.; Serra-Añó P.; Gonzalez, L.; Ye Lin, Y.; Prats-Boluda, G.; Garcia Casado, FJ. (2015). Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers. Spinal Cord. 53(10):772-777. https://doi.org/10.1038/sc.2015.81 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi. org/10.1038/sc.2015.81 | es_ES |
dc.description.upvformatpinicio | 772 | es_ES |
dc.description.upvformatpfin | 777 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 292056 | es_ES |
dc.identifier.eissn | 1476-5624 | |
dc.contributor.funder | Universitat de València | es_ES |
dc.description.references | Buchholz AC, Martin Ginis KA, Bray SR, Craven BC, Hicks AL, Hayes KC et al. Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab 2009; 34: 640–647. | es_ES |
dc.description.references | Hetz SP, Latimer AE, Buchholz AC, Martin Ginis KA . Increased participation in activities of daily living is associated with lower cholesterol levels in people with spinal cord injury. Arch Phys Med Rehabil 2009; 90: 1755–1759. | es_ES |
dc.description.references | Manns PJ, Chad KE . Determining the relation between quality of life, handicap, fitness, and physical activity for persons with spinal cord injury. Arch Phys Med Rehabil 1999; 80: 1566–1571. | es_ES |
dc.description.references | Serra-Añó P, Pellicer-Chenoll M, García-Massó X, Morales J, Giner-Pascual M, González L-M . Effects of resistance training on strength, pain and shoulder functionality in paraplegics. Spinal Cord 2012; 50: 827–831. | es_ES |
dc.description.references | Slater D, Meade MA . Participation in recreation and sports for persons with spinal cord injury: review and recommendations. NeuroRehabilitation 2004; 19: 121–129. | es_ES |
dc.description.references | Lee M, Zhu W, Hedrick B, Fernhall B . Determining metabolic equivalent values of physical activities for persons with paraplegia. Disabil Rehabil 2010; 32: 336–343. | es_ES |
dc.description.references | Lee M, Zhu W, Hedrick B, Fernhall B . Estimating MET values using the ratio of HR for persons with paraplegia. Med Sci Sports Exerc 2010; 42: 985–990. | es_ES |
dc.description.references | Hayes AM, Myers JN, Ho M, Lee MY, Perkash I, Kiratli BJ . Heart rate as a predictor of energy expenditure in people with spinal cord injury. J Rehabil Res Dev 2005; 42: 617–624. | es_ES |
dc.description.references | Washburn RA, Zhu W, McAuley E, Frogley M, Figoni SF . The physical activity scale for individuals with physical disabilities: development and evaluation. Arch Phys Med Rehabil 2002; 83: 193–200. | es_ES |
dc.description.references | Ginis KAM, Latimer AE, Hicks AL, Craven BC . Development and evaluation of an activity measure for people with spinal cord injury. Med Sci Sports Exerc 2005; 37: 1099–1111. | es_ES |
dc.description.references | Khan AM, Lee Y-K, Lee S, Kim T-S . Accelerometer’s position independent physical activity recognition system for long-term activity monitoring in the elderly. Med Biol Eng Comput 2010; 48: 1271–1279. | es_ES |
dc.description.references | Khan AM, Lee Y-K, Lee SY, Kim T-S . A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans Inf Technol Biomed Publ 2010; 14: 1166–1172. | es_ES |
dc.description.references | Liu S, Gao RX, John D, Staudenmayer J, Freedson PS . SVM-based multi-sensor fusion for free-living physical activity assessment. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc 2011; 2011: 3188–3191. | es_ES |
dc.description.references | Liu S, Gao RX, John D, Staudenmayer JW, Freedson PS . Multisensor data fusion for physical activity assessment. IEEE Trans Biomed Eng 2012; 59: 687–696. | es_ES |
dc.description.references | Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P . An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 2009; 107: 1300–1307. | es_ES |
dc.description.references | Trost SG, Wong W-K, Pfeiffer KA, Zheng Y . Artificial neural networks to predict activity type and energy expenditure in youth. Med Sci Sports Exerc 2012; 44: 1801–1809. | es_ES |
dc.description.references | David Apple MD . Pain above the injury level. Top Spinal Cord Inj Rehabil 2001; 7: 18–29. | es_ES |
dc.description.references | Subbarao JV, Klopfstein J, Turpin R . Prevalence and impact of wrist and shoulder pain in patients with spinal cord injury. J Spinal Cord Med 1995; 18: 9–13. | es_ES |
dc.description.references | Postma K, van den Berg-Emons HJG, Bussmann JBJ, Sluis TAR, Bergen MP, Stam HJ . Validity of the detection of wheelchair propulsion as measured with an Activity Monitor in patients with spinal cord injury. Spinal Cord 2005; 43: 550–557. | es_ES |
dc.description.references | Hiremath SV, Ding D, Farringdon J, Vyas N, Cooper RA . Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury. Spinal Cord 2013; 51: 705–709. | es_ES |
dc.description.references | Itzkovich M, Gelernter I, Biering-Sorensen F, Weeks C, Laramee MT, Craven BC et al. The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil 2007; 29: 1926–1933. | es_ES |
dc.description.references | García-Massó X, Serra-Añó P, García-Raffi LM, Sánchez-Pérez EA, López-Pascual J, Gonzalez LM . Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheelchair users with spinal cord injury. Spinal Cord 2013; 51: 898–903. | es_ES |
dc.description.references | Preece SJ, Goulermas JY, Kenney LPJ, Howard D . A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng 2009; 56: 871–879. | es_ES |
dc.description.references | Hurd WJ, Morrow MM, Kaufman KR . Tri-axial accelerometer analysis techniques for evaluating functional use of the extremities. J Electromyogr Kinesiol 2013; 23: 924–929. | es_ES |
dc.description.references | Teixeira FG, Jesus IRT, Mello RGT, Nadal J . Cross-correlation between head acceleration and stabilograms in humans in orthostatic posture. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc 2012; 2012: 3496–3499. | es_ES |
dc.description.references | Hastie T, Tibshirani R, Friedman J . The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer: New York, NY. 2009. | es_ES |