Mostrar el registro sencillo del ítem
dc.contributor.author | Herraiz García, Francisco Javier | es_ES |
dc.contributor.author | Vilanova Navarro, Santiago | es_ES |
dc.contributor.author | Andújar, Isabel | es_ES |
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Plazas Ávila, María de la O | es_ES |
dc.contributor.author | Gramazio, Pietro | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.date.accessioned | 2017-03-01T08:21:21Z | |
dc.date.available | 2017-03-01T08:21:21Z | |
dc.date.issued | 2015-11 | |
dc.identifier.issn | 0014-2336 | |
dc.identifier.uri | http://hdl.handle.net/10251/78401 | |
dc.description.abstract | Availability of standardized morphological and molecular characterization data is essential for the efficient development of breeding programmes in emerging crops. Pepino (Solanum muricatum) is an increasingly important vegetatively propagated vegetable crop for which concurrent data on morphological descriptors and molecular markers are not available. We evaluated 58 morphological traits, using a collection of 14 accessions of pepinos (including local Andean varieties and modern cultivars) and 8 of wild relatives, using the IPGRI and COMAV descriptors lists coupled with 20 EST-SSRs from tomato. High morphological diversity was found in both cultivated and wild accessions; all morphological traits except three were variable. Cultivated pepino and wild relatives were significantly different for 26 traits. Also, local varieties and modern cultivars of pepino were different from each other for 13 morphological traits and were clearly separated in a principal components analysis. Fourteen of the 20 tomato EST-SSRs were polymorphic, with an average number of alleles per locus of 4.07 and a polymorphic information content value of 0.4132. This revealed a high degree of transferability from tomato to pepino and wide molecular diversity in the collection. Cultivated materials manifest high levels of observed heterozygosity, suggesting that it is related to heterosis for yield associated with heterozygosis. SSR data clearly differentiated cultivated and wild materials. Furthermore, for pepinos, the modern varieties were genetically much less diverse than the traditional local varieties. However, both groups of cultivated material expressed a low degree of genetic differentiation. A strong correlation (r = 0.673) between morphological and molecular distances was found. Our results provide foundational information for programmes of germplasm conservation, and that can be used to enhance breeding for this emerging crop. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Euphytica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Breeding | es_ES |
dc.subject | Descriptors | es_ES |
dc.subject | Germplasm | es_ES |
dc.subject | Heterozygosity | es_ES |
dc.subject | Solanum muricatum | es_ES |
dc.subject | SSRs | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10681-015-1454-8 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Herraiz García, FJ.; Vilanova Navarro, S.; Andújar, I.; Torrent Martí, D.; Plazas Ávila, MDLO.; Gramazio, P.; Prohens Tomás, J. (2015). Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history. Euphytica. 206(2):301-318. doi:10.1007/s10681-015-1454-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10681-015-1454-8 | es_ES |
dc.description.upvformatpinicio | 301 | es_ES |
dc.description.upvformatpfin | 318 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 206 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 299458 | es_ES |
dc.identifier.eissn | 1573-5060 | |
dc.description.references | Abouelnasr H, Li YY, Zhang ZY, Liu JY, Li SF, Li W, Yu JL, McBeath JH, Han CG (2014) First report of Potato virus H on Solanum muricatum in China. Plant Dis 98:1016 | es_ES |
dc.description.references | Anderson GJ (1975) The variation and evolution of selected species of Solanum section Basarthrum. Brittonia 27:209–222 | es_ES |
dc.description.references | Anderson GJ (1979) Systematic and evolutionary consideration of Solanum section Basarthrum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Royal Botanic Gardens Kew and Linnean Society, London, pp 549–562 | es_ES |
dc.description.references | Anderson GJ, Symon DE (1988) Insect foragers on Solanum in Australia. Ann Missouri Bot Garden 75:842–852 | es_ES |
dc.description.references | Anderson GJ, Jansen RK, Kim Y (1996) The origin and relationships of the “pepino”, Solanum muricatum (Solanaceae): DNA restriction fragment evidence. Econ Bot 50:369–380 | es_ES |
dc.description.references | Anderson GJ, Martine CT, Prohens J, Nuez F (2006) Solanum perlongystilum and S. catilliflorum, new endemic Peruvian species of Solanum, section Basarthrum, are close relatives of the domesticated pepino, S. muricatum). Novon 16:161–167 | es_ES |
dc.description.references | Blanca JM, Prohens J, Anderson GJ, Cañizares J, Zuriaga E, Nuez F (2007) AFLP and DNA sequence variation in an Andean domesticate, pepino (Solanum muricatum, Solanaceae): implications for evolution and domestication. Am J Bot 94:1219–1229 | es_ES |
dc.description.references | Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic map in man using restriction fragment length polymorphisms. Am J Human Genet 32:314–331 | es_ES |
dc.description.references | Cavusoglu C, Sululoglu M (2013) In vitro propagation and acclimatization of pepino (Solanum muricatum). J Food Agric Environ 11(1):410–415 | es_ES |
dc.description.references | Cocaliadis MF, Fernández-Muñoz R, Pons C, Orzaez D, Granell A (2014) Increasing tomato fruit qualityby enhancing fruit chloroplast function. A double edged sword? J Expt Bot 65:4589–4598 | es_ES |
dc.description.references | Cooper HD, Spillane C, Hodgkin T (2001) Broadening the genetic base of crop production. CABI, Wallingford | es_ES |
dc.description.references | Davis DR (2009) Declining fruit and vegetable nutrient composition: What is the evidence? HortScience 44:15–19 | es_ES |
dc.description.references | Dawes SN, Pringle GJ (1983) Subtropical fruits from South and Central America. In: Wratt G, Smith HC (eds) Plant breeding in New Zealand. Butterworths, Wellington, pp 33–35 | es_ES |
dc.description.references | Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15 | es_ES |
dc.description.references | FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization, Rome | es_ES |
dc.description.references | Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312 | es_ES |
dc.description.references | Ghislain M, Núñez J, Herrera MR, Pignataro J, Guzman F, Bonierbale M, Spooner DM (2009) Robust and highly informative microsatellite-based genetic identity kit for potato. Mol Breed 23:377–388 | es_ES |
dc.description.references | Hsu CC, Guo YR, Wang ZH, Yin MC (2011) Protective effects of an aqueous extract from pepino (Solanum muricatum Ait.) in diabetic mice. J Sci Food Agric 91:1517–1522 | es_ES |
dc.description.references | IPGRI, COMAV (2004) Descriptors for pepino (Solanum muricatum). International Plant Genetic Resources Institute, Rome | es_ES |
dc.description.references | Kalia RK, Mai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334 | es_ES |
dc.description.references | Khoury C, Laliberté B, Guarino L (2010) Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genet Res Crop Evol 57:625–639 | es_ES |
dc.description.references | Levy D, Kedar N, Levy N (2006) Pepino (Solanum muricatum Aiton): Breeding in Israel for better taste and aroma. Israel J Plant Sci 54:205–213 | es_ES |
dc.description.references | Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insight into the history of tomato breeding. Nature Genet 46:1220–1226 | es_ES |
dc.description.references | Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220 | es_ES |
dc.description.references | Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2012) The potential for underutilized crops to improve security of food production. J Expt Bot 63:1075–1079 | es_ES |
dc.description.references | Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117 | es_ES |
dc.description.references | Mione T, Anderson GJ (1992) Pollen-ovule ratios and breeding system evolution in Solanum section Basarthrum (Solanaceae). Am J Bot 79:279–287 | es_ES |
dc.description.references | Muñoz C, Pertuzé R, Balzarini M, Bruno C, Salvatierra A (2014) Genetic variability in Chilean pepino (Solanum muricatum Aiton) fruit. Chil J Agric Res 74:143–147 | es_ES |
dc.description.references | Nei M (1973) Analysis of genetic diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323 | es_ES |
dc.description.references | Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RGF, Bai YL, de Jong H (2012) Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J 71:602–614 | es_ES |
dc.description.references | Prohens J, Ruiz JJ, Nuez F (1996) The pepino (Solanum muricatum, Solanaceae): a “new” crop with a history. Ec Bot 50:355–368 | es_ES |
dc.description.references | Prohens J, Ruiz JJ, Nuez F (1998) The inheritance of parthenocarpy and associated traits in the pepino. J Amer Soc Hort Sci 123:376–380 | es_ES |
dc.description.references | Prohens J, Leiva-Brondo M, Rodríguez-Burruezo A, Nuez F (2002) ‘Puzol’: a facultively parthenocarpic hybrid of pepino (Solanum muricatum). HortScience 37:418–419 | es_ES |
dc.description.references | Prohens J, Sánchez MC, Rodríguez-Burruezo A, Cámara M, Torija E, Nuez F (2005) Morphological and physico-chemical characteristics of fruits of pepino (Solanum muricatum), wild relatives (S. caripense and S. tabanoense) and interspecific hybrids. Implications in pepino breeding. Eur J Hort Sci 70:224–230 | es_ES |
dc.description.references | Rao VR, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue Organ Cult 68:1–19 | es_ES |
dc.description.references | Rodríguez-Burruezo A, Prohens J, Nuez F (2003a) Wild relatives can contribute to the improvement of fruit quality in pepino (Solanum muricatum). Euphytica 129:311–318 | es_ES |
dc.description.references | Rodríguez-Burruezo A, Prohens J, Nuez F (2003b) Performance of hybrid segregating populations of pepino (Solanum muricatum) and its relation to genetic distance among parents. J Hort Sci Biotechnol 78:911–918 | es_ES |
dc.description.references | Rodríguez-Burruezo A, Prohens J, Leiva-Brondo M, Nuez F (2004a) ‘Turia’ pepino. Can J Plant Sci 84:603–606 | es_ES |
dc.description.references | Rodríguez-Burruezo A, Prohens J, Nuez F (2004b) ‘Valencia’: a new pepino (Solanum muricatum) cultivar with improved fruit quality. HortScience 39:1500–1502 | es_ES |
dc.description.references | Rodríguez-Burruezo A, Prohens J, Fita AM (2011) Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): a model for the enhancement of underutilized exotic fruits. Food Res Intl 44:1927–1935 | es_ES |
dc.description.references | Ruiz JJ, Prohens J, Nuez F (1997) ‘Sweet Round’ and ‘Sweet Long’: Two pepino cultivars for Mediterranean climates. HortScience 32:751–752 | es_ES |
dc.description.references | Sakomoto K, Taguchi T (1991) Regeneration of intergeneric somatic hybrid plants between Lycopersicon esculentum and Solanum muricatum. Theor Appl Genet 81:509–513 | es_ES |
dc.description.references | Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214 | es_ES |
dc.description.references | Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:233–234 | es_ES |
dc.description.references | Simms C (1996) Catalogue of plants. Clive Simms, Lincolnshire | es_ES |
dc.description.references | Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573 | es_ES |
dc.description.references | Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Amer J Bot 80:676–688 | es_ES |
dc.description.references | Sudha G, Priya MS, Shree RBI, Vadivukkarasi S (2012) Antioxidant activity of ripe and unripe pepino fruit (Solanum muricatum Aiton). J Food Sci 77:C1131–C1135 | es_ES |
dc.description.references | Suresh BV, Roy R, Sahu K, Misra G, Chattopadhyay D (2014) Tomato genomic resources database: an integrated repository of useful tomato genomic information for basic and applied research. PLoS One 9:e86387 | es_ES |
dc.description.references | Vilanova S, Hurtado M, Cardona A, Plazas M, Gramazio P, Herraiz FJ, Andújar I, Prohens J (2014) Genetic diversity and relationships in local varieties of eggplant from different cultivar groups as assessed by genomic SSR markers. Not Bot Horti Agrobo 42:59–65 | es_ES |
dc.description.references | Yalçin H (2010) Effect of ripening period on composition of pepino (Solanum muricatum) fruit grown in Turkey. Afr J Biotechnol 9:3901–3903 | es_ES |
dc.description.references | Yildiz M, Akgul N, Sensoy S (2014) Morphological and molecular characterization of Turkish landraces of Cucumis melo L. Not Bot Horti Agrobo 42:51–58 | es_ES |