Mostrar el registro sencillo del ítem
dc.contributor.advisor | Serra Alfaro, José Manuel | es_ES |
dc.contributor.author | Navarrete Algaba, Laura | es_ES |
dc.date.accessioned | 2017-03-03T07:23:56Z | |
dc.date.available | 2017-03-03T07:23:56Z | |
dc.date.created | 2017-01-27 | es_ES |
dc.date.issued | 2017-03-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/78458 | |
dc.description.abstract | In this thesis different materials have been developed to use them in electrochemical cells. The electrochemical cells studied can be divided into two material big groups: solids oxides and acid salts materials. In the first group, materials to use them in electrodes for fuel cells an electrolyzer based on oxygen ion conductor electrolytes were optimized. Pertaining to this group, the influence of doping the Ba0.5Sr0.5Co0.8Fe0.2O3-d perovskite with 3% of Y, Zr and Sc in B position (ABO3-d) was checked. That optimization could reduce the polarization resistance of electrodes and improve the stability with time. Additionally, the limiting mechanisms in the oxygen reduction reaction were determined, and the influence of CO2 containing atmospheres was checked. La2NiO4+d;, pertaining to the Ruddlesden-Popper serie, is a mixed conductor of electron and oxygen ions. This compound was doped in La position (with Nd and Pr) and in Ni position (with Co). The dopants introduced were able to produce structural change and improve the cell performance, reducing in more than one order of magnitude the La1.5Pr0.5Ni0.8Co0.2O4+d; polarization resistance respect to the reference material (La2NiO4+d). In addition, the properties of an electrode based on the pure electronic conductor, La0.8Sr0.2MnO3-d; (LSM), were optimized. The triple phase boundary was enlarged by the addition of a second phase with ionic conductivity. That strategy made possible to reduce the electrode polarization resistance. In order to improve the oxygen reduction reaction, the addition of different catalysts by infiltration was studied. The different infiltrated oxides changed the electrochemistry properties, being the praseodymium oxide the catalyst which made possible a reduction in two orders of magnitude the electrode polarization resistance respects to the composite without infiltration. Furthermore, the efficiency of the cell working in fuel cell and electrolyzer mode was improved. Concerning the materials selected to use as electrodes on proton conductor electrolytes, the efficiency of electrodes based on LSM was optimized by using a second phase with protonic conductivity (La5.5WO12-d) and varying the sintering temperature of the electrode. Finally, the catalytic activity of the cell was boosted by infiltrating samaria doped ceria nanoparticles, achieving higher power densities for the fuel cell. The materials pertaining to the Ruddlesden-Popper series and studied for ionic conductor electrolytes were also used for cathodes in proton conductor fuel cells. After checking the compatibility with the electrolyte material, the influence of different electrode sintering temperatures and air containing atmospheres (dry, H2O y D2O) on the cathode performance was studied. Finally, the electrochemical cells based on acid salts (CsH2PO4) were designed and optimized. In that way, different cell configurations were studied, enabling to obtain thin and dense electrolytes and active electrodes for the hydrogen reduction/oxidation reactions. The thickness of the electrolyte was reduced by using steel and nickel porous supports. Furthermore, an epoxy resin type was added to the electrolyte material to enhance the mechanical properties. The electrodes configuration was modified from pure electronic conductors to composite electrodes. Moreover, copper was selected as an alternative of the expensive platinum working at high operation pressures. The cells developed were able to work with high pressures and with high content of water steam in fuel cell and electrolyzer modes. | en_EN |
dc.description.abstract | En la presente tesis doctoral se han desarrollado materiales para su uso en celdas electroquímicas. Las celdas electroquímicas estudiadas, se podrían separar en dos grandes grupos: materiales de óxido sólido y sales ácidas. En el primer grupo, se optimizaron materiales para su uso como electrodos en pilas de combustible y electrolizadores, basados en electrolitos con conducción puramente iónica. Dentro de este grupo, se comprobó la influencia de dopar la perovskita Ba0.5Sr0.5Co0.8Fe0.2O3-d, con un 3% de Y, Zr y Sc en la posición B (ABO3-d). Esta optimización llevó a la reducción de la resistencia de polarización así como a una mejora de la estabilidad con el tiempo. Así mismo, se determinaron los mecanismos limitantes en la reacción de reducción de oxígeno, y se comprobó la influencia de la presencia de CO2 en condiciones de operación. El La2NiO4+d perteneciente a la serie de Ruddlesden-Popper, es un conductor mixto de iones oxígeno y electrones. Éste, fue dopado tanto en la posición del La (con Nd y Pr) como en la posición del Ni (con Co). Los dopantes introducidos además de producir cambios estructurales, provocaron mejoras en el rendimiento de la celda, reduciendo para alguno de ellos, como el La1.5Pr0.5Ni0.8Co0.2O4+d, en casi un orden de magnitud la resistencia de polarización del electrodo de referencia (La2NiO4+d). De la misma manera, se optimizaron las propiedades del electrodo basado en el conductor electrónico puro La0.8Sr0.2MnO3-d (LSM). La adición de una segunda fase, con conductividad iónica, permitió aumentar los puntos triples (TPB) en los que la reacción de reducción de oxígeno tiene lugar y reducir la resistencia de polarización. Con el fin de mejorar la reacción de reducción de oxígeno, se estudió la adición de nanocatalizadores mediante la técnica de infiltración. Los diferentes óxidos infiltrados produjeron el cambio de las propiedades electroquímicas del electrodo, siendo el óxido de praseodimio el catalizador que consiguió disminuir en dos órdenes de magnitud la resistencia de polarización del composite no infiltrado. De la misma manera, la mejora de la eficiencia del electrodo infiltrado con Pr, mejoró los resultados de la celda electroquímica trabajando como pila (mayores densidades de potencia) y como electrolizador (menores voltajes). En lo que respecta a los materiales seleccionados para su uso como electrodos en electrolitos con conductividad protónica, se optimizó la eficiencia del cátodo basado en LSM, mediante el uso de una segunda fase conductora protónica (La5.5WO12-d) y variando la temperatura de sinterización del electrodo. Finalmente, se mejoró la actividad catalítica mediante la infiltración de nanopartículas de ceria dopada con samario, produciendo mayores densidades de corriente de la pila de combustible. Los materiales pertenecientes a la serie de Ruddlesden-Popper y usados para cátodos en pilas iónicas, fueron empleados también para cátodos en pilas protónicas. Después de comprobar que el material electrolítico (LWO) era compatible con los compuestos de la serie de Ruddlesden-Popper, se estudió la influencia de la temperatura de sinterización de los electrodos en el rendimiento, así como de la composición de la atmosfera de aire (seca, H2O y D2O). Finalmente, se diseñó y optimizó las celdas electroquímicas basadas en sales ácidas (CsH2PO4). En este sentido, se estudiaron diferentes configuraciones de celda, que permitieran obtener un electrolito denso con el menor espesor posible y unos electrodos activos a la reacción de reducción/oxidación de hidrógeno. Se consiguió reducir el espesor del electrolito soportando la celda en discos de acero y níquel porosos. Se añadió una resina tipo epoxi al material electrolítico para aumentar sus propiedades mecánicas. De la misma manera, se cambió la configuración de los electrodos pasando por conductores electrónicos puros a electrodos compuestos por conductores | es_ES |
dc.description.abstract | En la present tesis doctoral es van desenvolupar materials per al seu ús en cel·les electroquímiques. Les cel·les electroquímiques estudiades poden ser dividides en dos grans grups: materials d'òxid sòlid i sals àcides. En el primer grup, es van optimitzar materials per al seu ús com a elèctrodes en piles de combustible i electrolitzadors, basats en electròlits amb conducció purament iònica. Dins d'este grup, es va comprovar la influència de dopar la perovskita Ba0.5Sr0.5Co0.8Fe0.2O3-d amb un 3% de Y, Zr i Sc en la posició B (ABO3-d;). Esta optimització va portar a la reducció de la resistència de polarització així com a una millora de l'estabilitat amb el temps. Així mateix, es van determinar els mecanismes limitants en la reacció de reducció d'oxigen, i es va comprovar la influència de la presència de CO2 en condicions d'operació. El La2NiO4+d pertanyent a la sèrie de Ruddlesden-Popper, és un conductor mixt d'ions oxigen i electrons. Este, va ser dopat tant en la posició del La (amb Nd i Pr) com en la posició del Ni (amb Co). Els dopants introduïts a més de produir canvis estructurals, van provocar millores en el rendiment de la cel·la, reduint per a algun d'ells, com el La1.5Pr0.5Ni0.8Co0.2O4+d, en quasi un ordre de magnitud la resistència de polarització de l'elèctrode de referència (La2NiO4+d). De la mateixa manera, es van optimitzar les propietats de l'elèctrode basat en el conductor electrònic pur La0.8Sr0.2MnO3-d (LSM). L'addició d'una segona fase, amb conductivitat iònica, va permetre augmentar els punts triples (TPB), en els que la reacció de reducció d'oxigen té lloc, i reduir la resistència de polarització. A fi de millorar la reacció de reducció d'oxigen, es va estudiar l'adició de nanocatalitzadors per mitjà de la tècnica d'infiltració. Els diferents òxids infiltrats van produir el canvi de les propietats electroquímiques de l'elèctrode, sent l'òxid de praseodimi el catalitzador que va aconseguir disminuir en dos ordres de magnitud la resistència de polarització del composite no infiltrat. De la mateixa manera, la millora de l'eficiència de l'elèctrode infiltrat amb Pr, va millorar els resultats de la cel·la electroquímica treballant com a pila (majors densitats de potència) i com a electrolitzador (menors voltatges). Pel que fa als materials seleccionats per al seu ús com a elèctrodes en electròlits amb conductivitat protònica, es va optimitzar l'eficiència del càtode basat en LSM, per mitjà de l'ús d'una segona fase conductora protònica (La5.5WO12-d;) i variant la temperatura de sinterització de l'elèctrode. Finalment, es va millorar l'activitat catalítica mitjançant la infiltració de nanopartícules de ceria dopada amb samari, produint majors densitats de corrent de la pila de combustible. Els materials pertanyents a la sèrie de Ruddlesden-Popper i usats per a càtodes en piles iòniques, van ser empleats també per a càtodes en piles protòniques. Després de comprovar que el material electrolític (LWO) era compatible amb els compostos de la sèrie de Ruddlesden-Popper, es va estudiar la influència de la temperatura de sinterització dels elèctrodes en el rendiment, així com de la composició de l'atmosfera d'aire (seca, H2O i D2O). Finalment, es van dissenyar i optimitzar les cel·les electroquímiques basades en sals àcides (CsH2PO4). En este sentit, es van estudiar diferents configuracions de cel·la, que permeteren obtindre un electròlit dens amb el menor espessor possible i uns elèctrodes actius a la reacció de reducció/oxidació d'hidrogen. Es va aconseguir reduir l'espessor de l'electròlit suportant la cel·la en discos d'acer i níquel porosos. Es va afegir una resina tipus epoxi al material electrolític per a augmentar les seues propietats mecàniques. De la mateixa manera, es va canviar la configuració dels elèctrodes passant per conductors electrònics purs a elèctrodes compostos per conductors protònics | ca_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electrochemical devices | es_ES |
dc.subject | Solid Oxide Fuel Cells | es_ES |
dc.subject | Electrode, Catalyst | es_ES |
dc.subject | Electrochemical Impedance Spectroscopy | es_ES |
dc.subject | Solid Oxide Electrolyzer | es_ES |
dc.subject | Polarization resistance | es_ES |
dc.subject | Electron | es_ES |
dc.subject | Oxygen ions | es_ES |
dc.title | New electrochemical cells for energy conversion and storage | es_ES |
dc.type | Tesis doctoral | es_ES |
dc.identifier.doi | 10.4995/Thesis/10251/78458 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Navarrete Algaba, L. (2017). New electrochemical cells for energy conversion and storage [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/78458 | es_ES |
dc.description.accrualMethod | TESIS | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.relation.pasarela | TESIS\4393 | es_ES |