- -

In vivo protein tyrosine nitration in Arabidopsis thaliana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vivo protein tyrosine nitration in Arabidopsis thaliana

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lozano Juste, Jorge es_ES
dc.contributor.author Colom Moreno, Rosa María es_ES
dc.contributor.author Leon Ramos, Jose es_ES
dc.date.accessioned 2017-03-07T12:39:28Z
dc.date.available 2017-03-07T12:39:28Z
dc.date.issued 2011-06
dc.identifier.issn 0022-0957
dc.identifier.uri http://hdl.handle.net/10251/78549
dc.description.abstract Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pulldown potential in vivo targets of Y nitration in the Arabidopsis thaliana proteome. Further shotgun liquid chromatography–mass spectrometry (LC-MS/MS) proteomic analysis of the immunoprecipitated proteins allowed the identification of 127 proteins. Around 35% of them corresponded to homologues of proteins that have been previously reported to be Y nitrated in other non-plant organisms. Some of the putative in vivo Y-nitrated proteins were further confirmed by western blot with specific antibodies. Furthermore, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of protein spots, separated by two-dimensional electrophoresis from immunoprecipitated proteins, led to the identification of seven nitrated peptides corresponding to six different proteins. However, in vivo nitration sites among putative targets could not be identified by MS/MS. Nevertheless, an MS/MS spectrum with 3-aminoY318 instead of the expected 3-nitroY was found for cytosolic glyceraldehyde-3- phosphate dehydrogenase. Reduction of nitroY to aminoY during MS-based proteomic analysis together with the in vivo low abundance of these modifications made the identification of nitration sites difficult. In turn, in vitro nitration of methionine synthase, which was also found in the shotgun proteomic screening, allowed unequivocal identification of a nitration site at Y287. es_ES
dc.description.sponsorship We thank Rafael Ruiz-Partida (CIPF) for his valuable help with protein modelling. We also thank Renate Scheibe (Universitat Osnabruck, Germany), Dorothee Staiger (University of Bielefeld, Germany), Mariam Sahrawy (EEZ-CSIC, Granada, Spain), Joe Ogas (Purdue University, USA), and Dominique Rumeau (Universite de la Mediterranee, France) for their kind donation of antibodies against GAPDH, GRP7, fructose bisphosphatase, PICKEL, and carbonic anhydrase, respectively. The AtMS1 cDNA fused to the 6xHis tag was kindly donated by David Dixon (University of Durham, UK). MS-based protein identification was performed by the Proteomic Service of CIPF-PROTEORED (Valencia, Spain). This work was supported by Ministerio de Educacion y Ciencia from Spain and FEDER funds from EU grants GEN2003-20477-C02-02, BIO2005-00222, BIO2008-00839, and CONSOLIDER TRANSPLANTA CSD2007-00057 (to JL), a fellowship from the Bancaja-CSIC Programme (to JLJ), and a contract of the I3P Programme of CSIC (co-financed with FEDER funds of the EU, to RC-M). en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AminoY es_ES
dc.subject Arabidopsis es_ES
dc.subject Nitric oxide es_ES
dc.subject Nitrotyrosine es_ES
dc.subject NitroY es_ES
dc.subject Post-translational modification es_ES
dc.subject Protein nitration es_ES
dc.title In vivo protein tyrosine nitration in Arabidopsis thaliana es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/err042
dc.relation.projectID info:eu-repo/grantAgreement/MICYT//GEN2003-20477-C02-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BIO2005-00222/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-00839/ES/BIOSINTESIS Y FUNCION DEL OXIDO NITRICO EN ARABIDOPSIS. CONEXION CON LOS ACIDOS ABSCISICO, SALICILICO Y JASMONICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Lozano Juste, J.; Colom Moreno, RM.; Leon Ramos, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany. 62(10):3501-3517. https://doi.org/10.1093/jxb/err042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/jxb/err042 es_ES
dc.description.upvformatpinicio 3501 es_ES
dc.description.upvformatpfin 3517 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 213933 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Fundación Bancaja es_ES
dc.description.references Abello, N., Barroso, B., Kerstjens, H. A. M., Postma, D. S., & Bischoff, R. (2010). Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta, 80(4), 1503-1512. doi:10.1016/j.talanta.2009.02.002 es_ES
dc.description.references Abello, N., Kerstjens, H. A. M., Postma, D. S., & Bischoff, R. (2009). Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins. Journal of Proteome Research, 8(7), 3222-3238. doi:10.1021/pr900039c es_ES
dc.description.references Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2005). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201. doi:10.1093/bioinformatics/bti770 es_ES
dc.description.references Bechtold, U., Rabbani, N., Mullineaux, P. M., & Thornalley, P. J. (2009). Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. The Plant Journal, 59(4), 661-671. doi:10.1111/j.1365-313x.2009.03898.x es_ES
dc.description.references Bethke, P. C., Badger, M. R., & Jones, R. L. (2004). Apoplastic Synthesis of Nitric Oxide by Plant Tissues. The Plant Cell, 16(2), 332-341. doi:10.1105/tpc.017822 es_ES
dc.description.references Bethke, P. C., Libourel, I. G. L., & Jones, R. L. (2005). Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany, 57(3), 517-526. doi:10.1093/jxb/erj060 es_ES
dc.description.references Bowie, J., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164-170. doi:10.1126/science.1853201 es_ES
dc.description.references Buchczyk, D. P., Briviba, K., Hartl, F. U., & Sies, H. (2000). Responses to Peroxynitrite in Yeast: Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) as a Sensitive Intracellular Target for Nitration and Enhancement of Chaperone Expression and Ubiquitination. Biological Chemistry, 381(2), 121-126. doi:10.1515/bc.2000.017 es_ES
dc.description.references Cecconi, D., Orzetti, S., Vandelle, E., Rinalducci, S., Zolla, L., & Delledonne, M. (2009). Protein nitration during defense response in Arabidopsis thaliana. ELECTROPHORESIS, 30(14), 2460-2468. doi:10.1002/elps.200800826 es_ES
dc.description.references Chaki, M., Valderrama, R., Fernández-Ocaña, A. M., Carreras, A., López-Jaramillo, J., Luque, F., … Barroso, J. B. (2009). Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. Journal of Experimental Botany, 60(15), 4221-4234. doi:10.1093/jxb/erp263 es_ES
dc.description.references Chang, G.-G., & Huang, T.-M. (1980). Involvement of tyrosyl residues in the substrate binding of pigeon liver malic enzyme. Biochimica et Biophysica Acta (BBA) - Enzymology, 611(2), 217-226. doi:10.1016/0005-2744(80)90058-3 es_ES
dc.description.references Chen, H.-J. C., Chang, C.-M., Lin, W.-P., Cheng, D.-L., & Leong, M.-I. (2008). H2O2/Nitrite-Induced Post-translational Modifications of Human Hemoglobin Determined by Mass Spectrometry: Redox Regulation of Tyrosine Nitration and 3-Nitrotyrosine Reduction by Antioxidants. ChemBioChem, 9(2), 312-323. doi:10.1002/cbic.200700541 es_ES
dc.description.references Chiappetta, G., Corbo, C., Palmese, A., Marino, G., & Amoresano, A. (2009). Quantitative identification of protein nitration sites. PROTEOMICS, 9(6), 1524-1537. doi:10.1002/pmic.200800493 es_ES
dc.description.references Corpas, F. J., Barroso, J. B., & del Rı́o, L. A. (2001). Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Science, 6(4), 145-150. doi:10.1016/s1360-1385(01)01898-2 es_ES
dc.description.references Danishpajooh, I. O., Gudi, T., Chen, Y., Kharitonov, V. G., Sharma, V. S., & Boss, G. R. (2001). Nitric Oxide Inhibits Methionine Synthase Activityin Vivoand Disrupts Carbon Flow through the Folate Pathway. Journal of Biological Chemistry, 276(29), 27296-27303. doi:10.1074/jbc.m104043200 es_ES
dc.description.references Dixon, D. P., Skipsey, M., Grundy, N. M., & Edwards, R. (2005). Stress-Induced Protein S-Glutathionylation in Arabidopsis. Plant Physiology, 138(4), 2233-2244. doi:10.1104/pp.104.058917 es_ES
dc.description.references Flores-Pérez, Ú., Sauret-Güeto, S., Gas, E., Jarvis, P., & Rodríguez-Concepción, M. (2008). A Mutant Impaired in the Production of Plastome-Encoded Proteins Uncovers a Mechanism for the Homeostasis of Isoprenoid Biosynthetic Enzymes in Arabidopsis Plastids. The Plant Cell, 20(5), 1303-1315. doi:10.1105/tpc.108.058768 es_ES
dc.description.references Ghesquière, B., Colaert, N., Helsens, K., Dejager, L., Vanhaute, C., Verleysen, K., … Gevaert, K. (2009). In Vitroandin VivoProtein-bound Tyrosine Nitration Characterized by Diagonal Chromatography. Molecular & Cellular Proteomics, 8(12), 2642-2652. doi:10.1074/mcp.m900259-mcp200 es_ES
dc.description.references Grün, S., Lindermayr, C., Sell, S., & Durner, J. (2006). Nitric oxide and gene regulation in plants. Journal of Experimental Botany, 57(3), 507-516. doi:10.1093/jxb/erj053 es_ES
dc.description.references Gupta, K. J., Stoimenova, M., & Kaiser, W. M. (2005). In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. Journal of Experimental Botany, 56(420), 2601-2609. doi:10.1093/jxb/eri252 es_ES
dc.description.references He, Y. (2004). Nitric Oxide Represses the Arabidopsis Floral Transition. Science, 305(5692), 1968-1971. doi:10.1126/science.1098837 es_ES
dc.description.references Hong, S. J., Gokulrangan, G., & Schöneich, C. (2007). Proteomic analysis of age dependent nitration of rat cardiac proteins by solution isoelectric focusing coupled to nanoHPLC tandem mass spectrometry. Experimental Gerontology, 42(7), 639-651. doi:10.1016/j.exger.2007.03.005 es_ES
dc.description.references Igamberdiev, A. U., & Hill, R. D. (2008). Plant mitochondrial function during anaerobiosis. Annals of Botany, 103(2), 259-268. doi:10.1093/aob/mcn100 es_ES
dc.description.references Ischiropoulos, H. (2003). Biological selectivity and functional aspects of protein tyrosine nitration. Biochemical and Biophysical Research Communications, 305(3), 776-783. doi:10.1016/s0006-291x(03)00814-3 es_ES
dc.description.references Jasid, S., Simontacchi, M., Bartoli, C. G., & Puntarulo, S. (2006). Chloroplasts as a Nitric Oxide Cellular Source. Effect of Reactive Nitrogen Species on Chloroplastic Lipids and Proteins. Plant Physiology, 142(3), 1246-1255. doi:10.1104/pp.106.086918 es_ES
dc.description.references Laskowski, R., Rullmann, J. A., MacArthur, M., Kaptein, R., & Thornton, J. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4). doi:10.1007/bf00228148 es_ES
dc.description.references Lindermayr, C. (2006). Differential Inhibition of Arabidopsis Methionine Adenosyltransferases by Protein S-Nitrosylation. Journal of Biological Chemistry, 281(7), 4285-4291. doi:10.1074/jbc.m511635200 es_ES
dc.description.references Lindermayr, C., Saalbach, G., & Durner, J. (2005). Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis. Plant Physiology, 137(3), 921-930. doi:10.1104/pp.104.058719 es_ES
dc.description.references Liu, B., Tewari, A. K., Zhang, L., Green-Church, K. B., Zweier, J. L., Chen, Y.-R., & He, G. (2009). Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: Mitochondria as the major target. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1794(3), 476-485. doi:10.1016/j.bbapap.2008.12.008 es_ES
dc.description.references Liu, H.-Y., Yu, X., Cui, D.-Y., Sun, M.-H., Sun, W.-N., Tang, Z.-C., … Su, W.-A. (2007). The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Research, 17(7), 638-649. doi:10.1038/cr.2007.34 es_ES
dc.description.references Melo, F., & Feytmans, E. (1998). Assessing protein structures with a non-local atomic interaction energy. Journal of Molecular Biology, 277(5), 1141-1152. doi:10.1006/jmbi.1998.1665 es_ES
dc.description.references MISHINA, T. E., LAMB, C., & ZEIER, J. (2007). Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant, Cell and Environment, 30(1), 39-52. doi:10.1111/j.1365-3040.2006.01604.x es_ES
dc.description.references Miyagi, M., Sakaguchi, H., Darrow, R. M., Yan, L., West, K. A., Aulak, K. S., … Crabb, J. W. (2002). Evidence That Light Modulates Protein Nitration in Rat Retina. Molecular & Cellular Proteomics, 1(4), 293-303. doi:10.1074/mcp.m100034-mcp200 es_ES
dc.description.references Y., M.-G.-T., P., R., T., M., I., Q., M., L., W., K., & J., M.-G. (2002). Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 215(5), 708-715. doi:10.1007/s00425-002-0816-3 es_ES
dc.description.references Muñoz-Bertomeu, J., Cascales-Miñana, B., Mulet, J. M., Baroja-Fernández, E., Pozueta-Romero, J., Kuhn, J. M., … Ros, R. (2009). Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis. Plant Physiology, 151(2), 541-558. doi:10.1104/pp.109.143701 es_ES
dc.description.references Mur, L. A. J., Carver, T. L. W., & Prats, E. (2005). NO way to live; the various roles of nitric oxide in plant–pathogen interactions. Journal of Experimental Botany, 57(3), 489-505. doi:10.1093/jxb/erj052 es_ES
dc.description.references NICOLAOU, A., KENYON, S. H., GIBBONS, J. M., AST, T., & Gibbons, W. A. (1996). In vitro inactivation of mammalian methionine synthase by nitric oxide. European Journal of Clinical Investigation, 26(2), 167-170. doi:10.1046/j.1365-2362.1996.122254.x es_ES
dc.description.references Nicolaou, A., Waterfield, C. J., Kenyon, S. H., & Gibbons, W. A. (1997). The Inactivation of Methionine Synthase in Isolated Rat Hepatocytes by Sodium Nitroprusside. European Journal of Biochemistry, 244(3), 876-882. doi:10.1111/j.1432-1033.1997.00876.x es_ES
dc.description.references Palamalai, V., & Miyagi, M. (2010). Mechanism of glyceraldehyde-3-phosphate dehydrogenase inactivation by tyrosine nitration. Protein Science, 19(2), 255-262. doi:10.1002/pro.311 es_ES
dc.description.references Parani, M., Rudrabhatla, S., Myers, R., Weirich, H., Smith, B., Leaman, D. W., & Goldman, S. L. (2004). Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnology Journal, 2(4), 359-366. doi:10.1111/j.1467-7652.2004.00085.x es_ES
dc.description.references Petersen, B., Petersen, T., Andersen, P., Nielsen, M., & Lundegaard, C. (2009). A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology, 9(1), 51. doi:10.1186/1472-6807-9-51 es_ES
dc.description.references Polverari, A., Molesini, B., Pezzotti, M., Buonaurio, R., Marte, M., & Delledonne, M. (2003). Nitric Oxide-Mediated Transcriptional Changes inArabidopsis thaliana. Molecular Plant-Microbe Interactions, 16(12), 1094-1105. doi:10.1094/mpmi.2003.16.12.1094 es_ES
dc.description.references Romero-Puertas, M. C., Campostrini, N., Mattè, A., Righetti, P. G., Perazzolli, M., Zolla, L., … Delledonne, M. (2008). Proteomic analysis of S-nitrosylated proteins inArabidopsis thaliana undergoing hypersensitive response. PROTEOMICS, 8(7), 1459-1469. doi:10.1002/pmic.200700536 es_ES
dc.description.references Romero-Puertas, M. C., Laxa, M., Mattè, A., Zaninotto, F., Finkemeier, I., Jones, A. M. E., … Delledonne, M. (2007). S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration. The Plant Cell, 19(12), 4120-4130. doi:10.1105/tpc.107.055061 es_ES
dc.description.references Romero-Puertas, M. C., Perazzolli, M., Zago, E. D., & Delledonne, M. (2004). Nitric oxide signalling functions in plant-pathogen interactions. Cellular Microbiology, 6(9), 795-803. doi:10.1111/j.1462-5822.2004.00428.x es_ES
dc.description.references Saito, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., & Kawakita, K. (2006). Peroxynitrite Generation and Tyrosine Nitration in Defense Responses in Tobacco BY-2 Cells. Plant and Cell Physiology, 47(6), 689-697. doi:10.1093/pcp/pcj038 es_ES
dc.description.references Sarver, A., Scheffler, N. K., Shetlar, M. D., & Gibson, B. W. (2001). Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 12(4), 439-448. doi:10.1016/s1044-0305(01)00213-6 es_ES
dc.description.references Schmidt, P., Youhnovski, N., Daiber, A., Balan, A., Arsic, M., Bachschmid, M., … Ullrich, V. (2003). Specific Nitration at Tyrosine 430 Revealed by High Resolution Mass Spectrometry as Basis for Redox Regulation of Bovine Prostacyclin Synthase. Journal of Biological Chemistry, 278(15), 12813-12819. doi:10.1074/jbc.m208080200 es_ES
dc.description.references Simpson, G. G. (2005). NO flowering. BioEssays, 27(3), 239-241. doi:10.1002/bies.20201 es_ES
dc.description.references Söderling, A.-S., Hultman, L., Delbro, D., Højrup, P., & Caidahl, K. (2007). Reduction of the nitro group during sample preparation may cause underestimation of the nitration level in 3-nitrotyrosine immunoblotting. Journal of Chromatography B, 851(1-2), 277-286. doi:10.1016/j.jchromb.2007.02.036 es_ES
dc.description.references Souza, J. M., Daikhin, E., Yudkoff, M., Raman, C. S., & Ischiropoulos, H. (1999). Factors Determining the Selectivity of Protein Tyrosine Nitration. Archives of Biochemistry and Biophysics, 371(2), 169-178. doi:10.1006/abbi.1999.1480 es_ES
dc.description.references Stevens, S. M., Prokai-Tatrai, K., & Prokai, L. (2008). Factors That Contribute to the Misidentification of Tyrosine Nitration by Shotgun Proteomics. Molecular & Cellular Proteomics, 7(12), 2442-2451. doi:10.1074/mcp.m800065-mcp200 es_ES
dc.description.references Sultana, R., Poon, H. F., Cai, J., Pierce, W. M., Merchant, M., Klein, J. B., … Butterfield, D. A. (2006). Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiology of Disease, 22(1), 76-87. doi:10.1016/j.nbd.2005.10.004 es_ES
dc.description.references Suzuki, Y., Tanaka, M., Sohmiya, M., Ichinose, S., Omori, A., & Okamoto, K. (2005). Identification of nitrated proteins in the normal rat brain using a proteomics approach. Neurological Research, 27(6), 630-633. doi:10.1179/016164105x22039 es_ES
dc.description.references Szabó, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 6(8), 662-680. doi:10.1038/nrd2222 es_ES
dc.description.references Tsumoto, H., Taguchi, R., & Kohda, K. (2010). Efficient Identification and Quantification of Peptides Containing Nitrotyrosine by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry after Derivatization. CHEMICAL & PHARMACEUTICAL BULLETIN, 58(4), 488-494. doi:10.1248/cpb.58.488 es_ES
dc.description.references Turko, I. V., Li, L., Aulak, K. S., Stuehr, D. J., Chang, J.-Y., & Murad, F. (2003). Protein Tyrosine Nitration in the Mitochondria from Diabetic Mouse Heart. Journal of Biological Chemistry, 278(36), 33972-33977. doi:10.1074/jbc.m303734200 es_ES
dc.description.references Zhan, X., & Desiderio, D. M. (2009). Mass Spectrometric Identification of In Vivo Nitrotyrosine Sites in the Human Pituitary Tumor Proteome. Neuroproteomics, 137-163. doi:10.1007/978-1-59745-562-6_10 es_ES
dc.description.references Zhang, Q., Qian, W.-J., Knyushko, T. V., Clauss, T. R. W., Purvine, S. O., Moore, R. J., … Smith, R. D. (2007). A Method for Selective Enrichment and Analysis of Nitrotyrosine-Containing Peptides in Complex Proteome Samples. Journal of Proteome Research, 6(6), 2257-2268. doi:10.1021/pr0606934 es_ES
dc.description.references Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3), 545-555. doi:10.1007/s00425-006-0242-z es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem