Mostrar el registro sencillo del ítem
dc.contributor.author | Lozano Juste, Jorge | es_ES |
dc.contributor.author | Colom Moreno, Rosa María | es_ES |
dc.contributor.author | Leon Ramos, Jose | es_ES |
dc.date.accessioned | 2017-03-07T12:39:28Z | |
dc.date.available | 2017-03-07T12:39:28Z | |
dc.date.issued | 2011-06 | |
dc.identifier.issn | 0022-0957 | |
dc.identifier.uri | http://hdl.handle.net/10251/78549 | |
dc.description.abstract | Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pulldown potential in vivo targets of Y nitration in the Arabidopsis thaliana proteome. Further shotgun liquid chromatography–mass spectrometry (LC-MS/MS) proteomic analysis of the immunoprecipitated proteins allowed the identification of 127 proteins. Around 35% of them corresponded to homologues of proteins that have been previously reported to be Y nitrated in other non-plant organisms. Some of the putative in vivo Y-nitrated proteins were further confirmed by western blot with specific antibodies. Furthermore, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of protein spots, separated by two-dimensional electrophoresis from immunoprecipitated proteins, led to the identification of seven nitrated peptides corresponding to six different proteins. However, in vivo nitration sites among putative targets could not be identified by MS/MS. Nevertheless, an MS/MS spectrum with 3-aminoY318 instead of the expected 3-nitroY was found for cytosolic glyceraldehyde-3- phosphate dehydrogenase. Reduction of nitroY to aminoY during MS-based proteomic analysis together with the in vivo low abundance of these modifications made the identification of nitration sites difficult. In turn, in vitro nitration of methionine synthase, which was also found in the shotgun proteomic screening, allowed unequivocal identification of a nitration site at Y287. | es_ES |
dc.description.sponsorship | We thank Rafael Ruiz-Partida (CIPF) for his valuable help with protein modelling. We also thank Renate Scheibe (Universitat Osnabruck, Germany), Dorothee Staiger (University of Bielefeld, Germany), Mariam Sahrawy (EEZ-CSIC, Granada, Spain), Joe Ogas (Purdue University, USA), and Dominique Rumeau (Universite de la Mediterranee, France) for their kind donation of antibodies against GAPDH, GRP7, fructose bisphosphatase, PICKEL, and carbonic anhydrase, respectively. The AtMS1 cDNA fused to the 6xHis tag was kindly donated by David Dixon (University of Durham, UK). MS-based protein identification was performed by the Proteomic Service of CIPF-PROTEORED (Valencia, Spain). This work was supported by Ministerio de Educacion y Ciencia from Spain and FEDER funds from EU grants GEN2003-20477-C02-02, BIO2005-00222, BIO2008-00839, and CONSOLIDER TRANSPLANTA CSD2007-00057 (to JL), a fellowship from the Bancaja-CSIC Programme (to JLJ), and a contract of the I3P Programme of CSIC (co-financed with FEDER funds of the EU, to RC-M). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP) | es_ES |
dc.relation.ispartof | Journal of Experimental Botany | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | AminoY | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject | Nitric oxide | es_ES |
dc.subject | Nitrotyrosine | es_ES |
dc.subject | NitroY | es_ES |
dc.subject | Post-translational modification | es_ES |
dc.subject | Protein nitration | es_ES |
dc.title | In vivo protein tyrosine nitration in Arabidopsis thaliana | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jxb/err042 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICYT//GEN2003-20477-C02-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//BIO2005-00222/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2008-00839/ES/BIOSINTESIS Y FUNCION DEL OXIDO NITRICO EN ARABIDOPSIS. CONEXION CON LOS ACIDOS ABSCISICO, SALICILICO Y JASMONICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Lozano Juste, J.; Colom Moreno, RM.; Leon Ramos, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany. 62(10):3501-3517. https://doi.org/10.1093/jxb/err042 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1093/jxb/err042 | es_ES |
dc.description.upvformatpinicio | 3501 | es_ES |
dc.description.upvformatpfin | 3517 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 62 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 213933 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Ciencia y Tecnología | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | Fundación Bancaja | es_ES |
dc.description.references | Abello, N., Barroso, B., Kerstjens, H. A. M., Postma, D. S., & Bischoff, R. (2010). Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta, 80(4), 1503-1512. doi:10.1016/j.talanta.2009.02.002 | es_ES |
dc.description.references | Abello, N., Kerstjens, H. A. M., Postma, D. S., & Bischoff, R. (2009). Protein Tyrosine Nitration: Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins. Journal of Proteome Research, 8(7), 3222-3238. doi:10.1021/pr900039c | es_ES |
dc.description.references | Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2005). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201. doi:10.1093/bioinformatics/bti770 | es_ES |
dc.description.references | Bechtold, U., Rabbani, N., Mullineaux, P. M., & Thornalley, P. J. (2009). Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. The Plant Journal, 59(4), 661-671. doi:10.1111/j.1365-313x.2009.03898.x | es_ES |
dc.description.references | Bethke, P. C., Badger, M. R., & Jones, R. L. (2004). Apoplastic Synthesis of Nitric Oxide by Plant Tissues. The Plant Cell, 16(2), 332-341. doi:10.1105/tpc.017822 | es_ES |
dc.description.references | Bethke, P. C., Libourel, I. G. L., & Jones, R. L. (2005). Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany, 57(3), 517-526. doi:10.1093/jxb/erj060 | es_ES |
dc.description.references | Bowie, J., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164-170. doi:10.1126/science.1853201 | es_ES |
dc.description.references | Buchczyk, D. P., Briviba, K., Hartl, F. U., & Sies, H. (2000). Responses to Peroxynitrite in Yeast: Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) as a Sensitive Intracellular Target for Nitration and Enhancement of Chaperone Expression and Ubiquitination. Biological Chemistry, 381(2), 121-126. doi:10.1515/bc.2000.017 | es_ES |
dc.description.references | Cecconi, D., Orzetti, S., Vandelle, E., Rinalducci, S., Zolla, L., & Delledonne, M. (2009). Protein nitration during defense response in Arabidopsis thaliana. ELECTROPHORESIS, 30(14), 2460-2468. doi:10.1002/elps.200800826 | es_ES |
dc.description.references | Chaki, M., Valderrama, R., Fernández-Ocaña, A. M., Carreras, A., López-Jaramillo, J., Luque, F., … Barroso, J. B. (2009). Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. Journal of Experimental Botany, 60(15), 4221-4234. doi:10.1093/jxb/erp263 | es_ES |
dc.description.references | Chang, G.-G., & Huang, T.-M. (1980). Involvement of tyrosyl residues in the substrate binding of pigeon liver malic enzyme. Biochimica et Biophysica Acta (BBA) - Enzymology, 611(2), 217-226. doi:10.1016/0005-2744(80)90058-3 | es_ES |
dc.description.references | Chen, H.-J. C., Chang, C.-M., Lin, W.-P., Cheng, D.-L., & Leong, M.-I. (2008). H2O2/Nitrite-Induced Post-translational Modifications of Human Hemoglobin Determined by Mass Spectrometry: Redox Regulation of Tyrosine Nitration and 3-Nitrotyrosine Reduction by Antioxidants. ChemBioChem, 9(2), 312-323. doi:10.1002/cbic.200700541 | es_ES |
dc.description.references | Chiappetta, G., Corbo, C., Palmese, A., Marino, G., & Amoresano, A. (2009). Quantitative identification of protein nitration sites. PROTEOMICS, 9(6), 1524-1537. doi:10.1002/pmic.200800493 | es_ES |
dc.description.references | Corpas, F. J., Barroso, J. B., & del Rı́o, L. A. (2001). Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Science, 6(4), 145-150. doi:10.1016/s1360-1385(01)01898-2 | es_ES |
dc.description.references | Danishpajooh, I. O., Gudi, T., Chen, Y., Kharitonov, V. G., Sharma, V. S., & Boss, G. R. (2001). Nitric Oxide Inhibits Methionine Synthase Activityin Vivoand Disrupts Carbon Flow through the Folate Pathway. Journal of Biological Chemistry, 276(29), 27296-27303. doi:10.1074/jbc.m104043200 | es_ES |
dc.description.references | Dixon, D. P., Skipsey, M., Grundy, N. M., & Edwards, R. (2005). Stress-Induced Protein S-Glutathionylation in Arabidopsis. Plant Physiology, 138(4), 2233-2244. doi:10.1104/pp.104.058917 | es_ES |
dc.description.references | Flores-Pérez, Ú., Sauret-Güeto, S., Gas, E., Jarvis, P., & Rodríguez-Concepción, M. (2008). A Mutant Impaired in the Production of Plastome-Encoded Proteins Uncovers a Mechanism for the Homeostasis of Isoprenoid Biosynthetic Enzymes in Arabidopsis Plastids. The Plant Cell, 20(5), 1303-1315. doi:10.1105/tpc.108.058768 | es_ES |
dc.description.references | Ghesquière, B., Colaert, N., Helsens, K., Dejager, L., Vanhaute, C., Verleysen, K., … Gevaert, K. (2009). In Vitroandin VivoProtein-bound Tyrosine Nitration Characterized by Diagonal Chromatography. Molecular & Cellular Proteomics, 8(12), 2642-2652. doi:10.1074/mcp.m900259-mcp200 | es_ES |
dc.description.references | Grün, S., Lindermayr, C., Sell, S., & Durner, J. (2006). Nitric oxide and gene regulation in plants. Journal of Experimental Botany, 57(3), 507-516. doi:10.1093/jxb/erj053 | es_ES |
dc.description.references | Gupta, K. J., Stoimenova, M., & Kaiser, W. M. (2005). In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. Journal of Experimental Botany, 56(420), 2601-2609. doi:10.1093/jxb/eri252 | es_ES |
dc.description.references | He, Y. (2004). Nitric Oxide Represses the Arabidopsis Floral Transition. Science, 305(5692), 1968-1971. doi:10.1126/science.1098837 | es_ES |
dc.description.references | Hong, S. J., Gokulrangan, G., & Schöneich, C. (2007). Proteomic analysis of age dependent nitration of rat cardiac proteins by solution isoelectric focusing coupled to nanoHPLC tandem mass spectrometry. Experimental Gerontology, 42(7), 639-651. doi:10.1016/j.exger.2007.03.005 | es_ES |
dc.description.references | Igamberdiev, A. U., & Hill, R. D. (2008). Plant mitochondrial function during anaerobiosis. Annals of Botany, 103(2), 259-268. doi:10.1093/aob/mcn100 | es_ES |
dc.description.references | Ischiropoulos, H. (2003). Biological selectivity and functional aspects of protein tyrosine nitration. Biochemical and Biophysical Research Communications, 305(3), 776-783. doi:10.1016/s0006-291x(03)00814-3 | es_ES |
dc.description.references | Jasid, S., Simontacchi, M., Bartoli, C. G., & Puntarulo, S. (2006). Chloroplasts as a Nitric Oxide Cellular Source. Effect of Reactive Nitrogen Species on Chloroplastic Lipids and Proteins. Plant Physiology, 142(3), 1246-1255. doi:10.1104/pp.106.086918 | es_ES |
dc.description.references | Laskowski, R., Rullmann, J. A., MacArthur, M., Kaptein, R., & Thornton, J. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4). doi:10.1007/bf00228148 | es_ES |
dc.description.references | Lindermayr, C. (2006). Differential Inhibition of Arabidopsis Methionine Adenosyltransferases by Protein S-Nitrosylation. Journal of Biological Chemistry, 281(7), 4285-4291. doi:10.1074/jbc.m511635200 | es_ES |
dc.description.references | Lindermayr, C., Saalbach, G., & Durner, J. (2005). Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis. Plant Physiology, 137(3), 921-930. doi:10.1104/pp.104.058719 | es_ES |
dc.description.references | Liu, B., Tewari, A. K., Zhang, L., Green-Church, K. B., Zweier, J. L., Chen, Y.-R., & He, G. (2009). Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: Mitochondria as the major target. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1794(3), 476-485. doi:10.1016/j.bbapap.2008.12.008 | es_ES |
dc.description.references | Liu, H.-Y., Yu, X., Cui, D.-Y., Sun, M.-H., Sun, W.-N., Tang, Z.-C., … Su, W.-A. (2007). The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Research, 17(7), 638-649. doi:10.1038/cr.2007.34 | es_ES |
dc.description.references | Melo, F., & Feytmans, E. (1998). Assessing protein structures with a non-local atomic interaction energy. Journal of Molecular Biology, 277(5), 1141-1152. doi:10.1006/jmbi.1998.1665 | es_ES |
dc.description.references | MISHINA, T. E., LAMB, C., & ZEIER, J. (2007). Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant, Cell and Environment, 30(1), 39-52. doi:10.1111/j.1365-3040.2006.01604.x | es_ES |
dc.description.references | Miyagi, M., Sakaguchi, H., Darrow, R. M., Yan, L., West, K. A., Aulak, K. S., … Crabb, J. W. (2002). Evidence That Light Modulates Protein Nitration in Rat Retina. Molecular & Cellular Proteomics, 1(4), 293-303. doi:10.1074/mcp.m100034-mcp200 | es_ES |
dc.description.references | Y., M.-G.-T., P., R., T., M., I., Q., M., L., W., K., & J., M.-G. (2002). Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 215(5), 708-715. doi:10.1007/s00425-002-0816-3 | es_ES |
dc.description.references | Muñoz-Bertomeu, J., Cascales-Miñana, B., Mulet, J. M., Baroja-Fernández, E., Pozueta-Romero, J., Kuhn, J. M., … Ros, R. (2009). Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis. Plant Physiology, 151(2), 541-558. doi:10.1104/pp.109.143701 | es_ES |
dc.description.references | Mur, L. A. J., Carver, T. L. W., & Prats, E. (2005). NO way to live; the various roles of nitric oxide in plant–pathogen interactions. Journal of Experimental Botany, 57(3), 489-505. doi:10.1093/jxb/erj052 | es_ES |
dc.description.references | NICOLAOU, A., KENYON, S. H., GIBBONS, J. M., AST, T., & Gibbons, W. A. (1996). In vitro inactivation of mammalian methionine synthase by nitric oxide. European Journal of Clinical Investigation, 26(2), 167-170. doi:10.1046/j.1365-2362.1996.122254.x | es_ES |
dc.description.references | Nicolaou, A., Waterfield, C. J., Kenyon, S. H., & Gibbons, W. A. (1997). The Inactivation of Methionine Synthase in Isolated Rat Hepatocytes by Sodium Nitroprusside. European Journal of Biochemistry, 244(3), 876-882. doi:10.1111/j.1432-1033.1997.00876.x | es_ES |
dc.description.references | Palamalai, V., & Miyagi, M. (2010). Mechanism of glyceraldehyde-3-phosphate dehydrogenase inactivation by tyrosine nitration. Protein Science, 19(2), 255-262. doi:10.1002/pro.311 | es_ES |
dc.description.references | Parani, M., Rudrabhatla, S., Myers, R., Weirich, H., Smith, B., Leaman, D. W., & Goldman, S. L. (2004). Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnology Journal, 2(4), 359-366. doi:10.1111/j.1467-7652.2004.00085.x | es_ES |
dc.description.references | Petersen, B., Petersen, T., Andersen, P., Nielsen, M., & Lundegaard, C. (2009). A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology, 9(1), 51. doi:10.1186/1472-6807-9-51 | es_ES |
dc.description.references | Polverari, A., Molesini, B., Pezzotti, M., Buonaurio, R., Marte, M., & Delledonne, M. (2003). Nitric Oxide-Mediated Transcriptional Changes inArabidopsis thaliana. Molecular Plant-Microbe Interactions, 16(12), 1094-1105. doi:10.1094/mpmi.2003.16.12.1094 | es_ES |
dc.description.references | Romero-Puertas, M. C., Campostrini, N., Mattè, A., Righetti, P. G., Perazzolli, M., Zolla, L., … Delledonne, M. (2008). Proteomic analysis of S-nitrosylated proteins inArabidopsis thaliana undergoing hypersensitive response. PROTEOMICS, 8(7), 1459-1469. doi:10.1002/pmic.200700536 | es_ES |
dc.description.references | Romero-Puertas, M. C., Laxa, M., Mattè, A., Zaninotto, F., Finkemeier, I., Jones, A. M. E., … Delledonne, M. (2007). S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration. The Plant Cell, 19(12), 4120-4130. doi:10.1105/tpc.107.055061 | es_ES |
dc.description.references | Romero-Puertas, M. C., Perazzolli, M., Zago, E. D., & Delledonne, M. (2004). Nitric oxide signalling functions in plant-pathogen interactions. Cellular Microbiology, 6(9), 795-803. doi:10.1111/j.1462-5822.2004.00428.x | es_ES |
dc.description.references | Saito, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., & Kawakita, K. (2006). Peroxynitrite Generation and Tyrosine Nitration in Defense Responses in Tobacco BY-2 Cells. Plant and Cell Physiology, 47(6), 689-697. doi:10.1093/pcp/pcj038 | es_ES |
dc.description.references | Sarver, A., Scheffler, N. K., Shetlar, M. D., & Gibson, B. W. (2001). Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 12(4), 439-448. doi:10.1016/s1044-0305(01)00213-6 | es_ES |
dc.description.references | Schmidt, P., Youhnovski, N., Daiber, A., Balan, A., Arsic, M., Bachschmid, M., … Ullrich, V. (2003). Specific Nitration at Tyrosine 430 Revealed by High Resolution Mass Spectrometry as Basis for Redox Regulation of Bovine Prostacyclin Synthase. Journal of Biological Chemistry, 278(15), 12813-12819. doi:10.1074/jbc.m208080200 | es_ES |
dc.description.references | Simpson, G. G. (2005). NO flowering. BioEssays, 27(3), 239-241. doi:10.1002/bies.20201 | es_ES |
dc.description.references | Söderling, A.-S., Hultman, L., Delbro, D., Højrup, P., & Caidahl, K. (2007). Reduction of the nitro group during sample preparation may cause underestimation of the nitration level in 3-nitrotyrosine immunoblotting. Journal of Chromatography B, 851(1-2), 277-286. doi:10.1016/j.jchromb.2007.02.036 | es_ES |
dc.description.references | Souza, J. M., Daikhin, E., Yudkoff, M., Raman, C. S., & Ischiropoulos, H. (1999). Factors Determining the Selectivity of Protein Tyrosine Nitration. Archives of Biochemistry and Biophysics, 371(2), 169-178. doi:10.1006/abbi.1999.1480 | es_ES |
dc.description.references | Stevens, S. M., Prokai-Tatrai, K., & Prokai, L. (2008). Factors That Contribute to the Misidentification of Tyrosine Nitration by Shotgun Proteomics. Molecular & Cellular Proteomics, 7(12), 2442-2451. doi:10.1074/mcp.m800065-mcp200 | es_ES |
dc.description.references | Sultana, R., Poon, H. F., Cai, J., Pierce, W. M., Merchant, M., Klein, J. B., … Butterfield, D. A. (2006). Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiology of Disease, 22(1), 76-87. doi:10.1016/j.nbd.2005.10.004 | es_ES |
dc.description.references | Suzuki, Y., Tanaka, M., Sohmiya, M., Ichinose, S., Omori, A., & Okamoto, K. (2005). Identification of nitrated proteins in the normal rat brain using a proteomics approach. Neurological Research, 27(6), 630-633. doi:10.1179/016164105x22039 | es_ES |
dc.description.references | Szabó, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 6(8), 662-680. doi:10.1038/nrd2222 | es_ES |
dc.description.references | Tsumoto, H., Taguchi, R., & Kohda, K. (2010). Efficient Identification and Quantification of Peptides Containing Nitrotyrosine by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry after Derivatization. CHEMICAL & PHARMACEUTICAL BULLETIN, 58(4), 488-494. doi:10.1248/cpb.58.488 | es_ES |
dc.description.references | Turko, I. V., Li, L., Aulak, K. S., Stuehr, D. J., Chang, J.-Y., & Murad, F. (2003). Protein Tyrosine Nitration in the Mitochondria from Diabetic Mouse Heart. Journal of Biological Chemistry, 278(36), 33972-33977. doi:10.1074/jbc.m303734200 | es_ES |
dc.description.references | Zhan, X., & Desiderio, D. M. (2009). Mass Spectrometric Identification of In Vivo Nitrotyrosine Sites in the Human Pituitary Tumor Proteome. Neuroproteomics, 137-163. doi:10.1007/978-1-59745-562-6_10 | es_ES |
dc.description.references | Zhang, Q., Qian, W.-J., Knyushko, T. V., Clauss, T. R. W., Purvine, S. O., Moore, R. J., … Smith, R. D. (2007). A Method for Selective Enrichment and Analysis of Nitrotyrosine-Containing Peptides in Complex Proteome Samples. Journal of Proteome Research, 6(6), 2257-2268. doi:10.1021/pr0606934 | es_ES |
dc.description.references | Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3), 545-555. doi:10.1007/s00425-006-0242-z | es_ES |