- -

Electrocardiographic Spectral Features for Long-Term Outcome Prognosis of Atrial Fibrillation Catheter Ablation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Electrocardiographic Spectral Features for Long-Term Outcome Prognosis of Atrial Fibrillation Catheter Ablation

Show simple item record

Files in this item

dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Hornero, Fernando es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2017-03-07T15:03:42Z
dc.date.available 2017-03-07T15:03:42Z
dc.date.issued 2016-11
dc.identifier.issn 0090-6964
dc.identifier.uri http://hdl.handle.net/10251/78556
dc.description.abstract Atrial fibrillation (AF) is the most common arrhythmia in routine clinical practice. Despite many years of research, its mechanisms still are not well understood, thus reducing the effectiveness of AF treatments. Nowadays, pulmonary vein isolation by catheter ablation is the treat- ment of choice for AF resistant either to pharmacological or electrical cardioversion. However, given that long-term recurrences are common, an appropriate patient selection before the procedure is of paramount relevance in the improvement of AF catheter ablation outcome. The present work studies how several spectral features of the atrial activity (AA) from a single lead of the surface electrocardio- gram (ECG) can become potential pre-ablation predictors of long-term (>2 months) sinus rhythm maintenance. Among all the analyzed spectral features, results indicated that the most significant single predictor of paroxysmal AF ablation treatment outcome was related to the amplitude of the first harmonic of the dominant frequency, providing sensitivity (Se), specificity (Sp) and accuracy (Ac) values of 90%, 42.86 and 77.78%, respectively. On the other hand, the AA harmonic structure was the most significant single predictor for persistent AF, with Se, Sp and Ac values of 100%, 54.55 and 77.27%, respectively. A logistic regression analysis, mainly based on spectral amplitudes as well as on the harmonic structure of the AA, provided a higher predictive ability both for paroxysmal AF (Se = 100%, Sp = 57.14% and Ac = 88.89%) and persistent AF (Se = 90.91%, Sp = 72.73 and Ac = 81.82%). In conclusion, the study of key AA spectral features from the surface ECG can provide a significant preoperative prognosis of AF catheter ablation outcome at long-term follow-up. es_ES
dc.description.sponsorship Research funded by Grants TEC2014-52250-R from the Spanish Ministry of Economy and Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla-La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Spanish Ministry of Economy and Competitiveness [TEC2014-52250-R] es_ES
dc.relation Junta de Comunidades de Castilla-La Mancha [PPII-2014-026-P] es_ES
dc.relation.ispartof Annals of Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Catheter ablation es_ES
dc.subject Electrocardiogram es_ES
dc.subject Spectral analysis es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Electrocardiographic Spectral Features for Long-Term Outcome Prognosis of Atrial Fibrillation Catheter Ablation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10439-016-1641-3
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica es_ES
dc.description.bibliographicCitation Alcaraz, R.; Hornero, F.; Rieta, JJ. (2016). Electrocardiographic Spectral Features for Long-Term Outcome Prognosis of Atrial Fibrillation Catheter Ablation. Annals of Biomedical Engineering. 44(11):3307-3318. doi:10.1007/s10439-016-1641-3 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10439-016-1641-3 es_ES
dc.description.upvformatpinicio 3307 es_ES
dc.description.upvformatpfin 3318 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 322066 es_ES
dc.identifier.eissn 1573-9686
dc.relation.references Alcaraz, R., and J. J. Rieta. Adaptive singular value cancellation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiol. Meas. 29(12):1351–1369, 2008. es_ES
dc.relation.references Alcaraz, R., and J. J. Rieta. Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation. Comput. Methods Programs Biomed. 93(2):148–154, 2009. es_ES
dc.relation.references Alcaraz, R., and J. J. Rieta. The application of nonlinear metrics to assess organization differences in short recordings of paroxysmal and persistent atrial fibrillation. Physiol. Meas. 31(1):115–130, 2010. es_ES
dc.relation.references Atienza, F., J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E. G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, and O. Berenfeld. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm 6(1):33–40, 2009. es_ES
dc.relation.references Balk, E. M., A. C. Garlitski, A. A. Alsheikh-Ali, T. Terasawa, M. Chung, and S. Ip. Predictors of atrial fibrillation recurrence after radiofrequency catheter ablation: a systematic review. J. Cardiovasc. Electrophysiol. 21(11):1208–1216, 2010. es_ES
dc.relation.references Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press Inc, 1995. es_ES
dc.relation.references Blomstrom Lundqvist, C., G. Y. H. Lip, and P. Kirchhof. What are the costs of atrial fibrillation? Europace 13 Suppl 2:ii9–12, 2011. es_ES
dc.relation.references Bollmann, A., D. Husser, L. T. Mainardi, F. Lombardi, P. Langley, A. Murray, J. J. Rieta, J. Millet, S. B. Olsson, M. Stridh, and L. Sornmo. Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. Europace 8(11):911–926, 2006. es_ES
dc.relation.references Bollmann, A., N. K. Kanuru, K. K. McTeague, P. F. Walter, D. B. DeLurgio, and J. J. Langberg. Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. Am. J. Cardiol. 81(12):1439–1445, 1998. es_ES
dc.relation.references Calkins, H., K. H. Kuck, R. Cappato, J. Brugada, A. J. Camm, S. A. Chen, et al. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace 14(4):528–606, 2012. es_ES
dc.relation.references Chang, S.-H., M. Ulfarsson, A. Chugh, K. Yoshida, K. Jongnarangsin, T. Crawford, E. Good, F. Pelosi, F. Bogun, F. Morady, and H. Oral. Time- and frequency-domain characteristics of atrial electrograms during sinus rhythm and atrial fibrillation. J. Cardiovasc. Electrophysiol. 22(8):851–857, 2011. es_ES
dc.relation.references Ciaccio, E. J., A. B. Biviano, W. Whang, A. Gambhir, and H. Garan. Spectral profiles of complex fractionated atrial electrograms are different in longstanding and acute onset atrial fibrillation atrial electrogram spectra. J. Cardiovasc. Electrophysiol. 23(9):971–9, 2012. es_ES
dc.relation.references Cox, J. L. Surgical treatment of atrial fibrillation: a review. Europace 5 Suppl 1:S20–9, 2004. es_ES
dc.relation.references Di Marco, L. Y., D. Raine, J. P. Bourke, and P. Langley. Characteristics of atrial fibrillation cycle length predict restoration of sinus rhythm by catheter ablation. Heart Rhythm 10(9):1303–1310, 2013. es_ES
dc.relation.references Di Marco, L. Y., D. Raine, J. P. Bourke, and P. Langley. Recurring patterns of atrial fibrillation in surface ECG predict restoration of sinus rhythm by catheter ablation. Comput. Biol. Med. 54C:172–179, 2014. es_ES
dc.relation.references Dyer, J., S. Malakouti, and S. Stavrakis. Measuring spectral organization in atrial fibrillation. In Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International IS - SN - VO - VL -, 2015, pp. 773–778. es_ES
dc.relation.references Everett, T. H., L. C. Kok, R. H. Vaughn, J. R. Moorman, and D. E. Haines. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans. Biomed. Eng. 48(9):969–978, 2001. es_ES
dc.relation.references Gal, P., A. C. Linnenbank, A. Adiyaman, J. J. J. Smit, A. R. Ramdat Misier, P. P. H. M. Delnoy, J. M. T. de Bakker, and A. Elvan. Correlation of atrial fibrillation cycle length and fractionation is associated with atrial fibrillation free survival. Int. J. Cardiol. 187 IS:208–215, 2015. es_ES
dc.relation.references Ganesan, A. N., N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders. Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis. J. Am. Heart. Assoc. 2(2):e004549, 2013. es_ES
dc.relation.references Garibaldi, M., V. Zarzoso, D. G. Latcu, and N. Saoudi. Predicting catheter ablation outcome in persistent atrial fibrillation using atrial dominant frequency and related spectral features. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2012, 2012, pp. 613–616. es_ES
dc.relation.references Gerstenfeld, E. P. and S. Duggirala. Atrial fibrillation ablation: indications, emerging techniques, and follow-up. Prog. Cardiovas. Dis. 2015. es_ES
dc.relation.references Gillis, A. M., A. D. Krahn, A. C. Skanes, and S. Nattel. Management of atrial fibrillation in the year 2033: new concepts, tools, and applications leading to personalized medicine. Can. J. Cardiol. 29(10):1141–1146, 2013. es_ES
dc.relation.references Gorenek, B. and G. Kudaiberdieva. Cost analysis of radiofrequency catheter ablation for atrial fibrillation. Int. J. Cardiol. 167(6):2462–2467, 2013. es_ES
dc.relation.references Haïssaguerre, M., M. Hocini, P. Sanders, F. Sacher, M. Rotter, Y. Takahashi, T. Rostock, L.-F. Hsu, P. Bordachar, S. Reuter, R. Roudaut, J. Clémenty, and P. Jaïs. Catheter ablation of long-lasting persistent atrial fibrillation: clinical outcome and mechanisms of subsequent arrhythmias. J. Cardiovasc. Electrophysiol. 16(11):1138–47, 2005. es_ES
dc.relation.references Healey, J. S., C. W. Israel, S. J. Connolly, S. H. Hohnloser, G. M. Nair, S. Divakaramenon, A. Capucci, I. C. V. Gelder, C.-P. Lau, M. R. Gold, M. Carlson, E. Themeles, and C. A. Morillo. Relevance of electrical remodeling in human atrial fibrillation: results of the Asymptomatic Atrial Fibrillation and Stroke Evaluation in Pacemaker Patients and the Atrial Fibrillation Reduction Atrial Pacing Trial mechanisms of atrial fibrillation study. Circ. Arrhythm. Electrophysiol. 5(4):626–631, 2012. es_ES
dc.relation.references Holm, M., S. Pehrson, M. Ingemansson, L. Sornmo, R. Johansson, L. Sandhall, M. Sunemark, B. Smideberg, C. Olsson, and S. B. Olsson. Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovasc. Res. 38(1):69–81, 1998. es_ES
dc.relation.references Holmqvist, F., M. Stridh, J. E. P. Waktare, A. Roijer, L. Sornmo, P. G. Platonov, and C. J. Meurling. Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation. Europace 8(8):559–565, 2006. es_ES
dc.relation.references Holmstrom, L., P. Koistinen, J. Laaksonen, and E. Oja. Neural and statistical classifiers-taxonomy and two case studies. IEEE Trans. Neural. Netw. 8(1):5–17, 1997. es_ES
dc.relation.references Hornero, R., J. Escudero, A. Fernández, J. Poza, and C. Gómez. Spectral and nonlinear analyses of meg background activity in patients with alzheimer’s disease. IEEE Trans. Biomed. Eng. 55(6):1658–65, 2008. es_ES
dc.relation.references Hsu, N.-W., Y.-J. Lin, C.-T. Tai, T. Kao, S.-L. Chang, W. Wongcharoen, L.-W. Lo, A. R. Udyavar, Y.-F. Hu, H.-W. Tso, Y.-J. Chen, S. Higa, and S.-A. Chen. Frequency analysis of the fibrillatory activity from surface ECG lead V1 and intracardiac recordings: implications for mapping of AF. Europace 10(4):438–43, 2008. es_ES
dc.relation.references Husser, D., M. Stridh, D. S. Cannom, A. K. Bhandari, M. J. Girsky, S. Kang, L. Sornmo, S. B. Olsson, and A. Bollmann. Validation and clinical application of time-frequency analysis of atrial fibrillation electrocardiograms. J. Cardiovasc. Electrophysiol. 18(1):41–46, 2007. es_ES
dc.relation.references Husser, D., M. Stridh, L. Sornmo, C. Geller, H. U. Klein, S. B. Olsson, and A. Bollmann. Time-frequency analysis of the surface electrocardiogram for monitoring antiarrhythmic drug effects in atrial fibrillation. Am. J. Cardiol. 95(4):526–528, 2005. es_ES
dc.relation.references January, C. T., L. S. Wann, J. S. Alpert, H. Calkins, J. E. Cigarroa, J. C. Cleveland, J. B. Conti, P. T. Ellinor, M. D. Ezekowitz, M. E. Field, K. T. Murray, R. L. Sacco, W. G. Stevenson, P. J. Tchou, C. M. Tracy, C. W. Yancy, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2014. es_ES
dc.relation.references Jian, A. K., R. P. W. Duin, and J. Mao. Statistical pattern recognition: a review. IEEE Trans. Pattern. Anal. Mach. Intell. 22:4–37, 2000. es_ES
dc.relation.references Jobson, J. D. Applied Multivariate Data Analysis: Categorical and Multivariate Methods. Springer, 1991. es_ES
dc.relation.references Jung, Y., and H. Jianhua. A k-fold averaging cross-validation procedure. J.Nonparameteric Stat. 27(2):167–179, 2015. es_ES
dc.relation.references Lasko, T. A., J. G. Bhagwat, K. H. Zou, and L. Ohno-Machado. The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform. 38(5):404–415, 2005. es_ES
dc.relation.references Matsuo, S., N. Lellouche, M. Wright, M. Bevilacqua, S. Knecht, I. Nault, K.-T. Lim, L. Arantes, M. D. O’Neill, P. G. Platonov, J. Carlson, F. Sacher, M. Hocini, P. Jaïs, and M. Haïssaguerre. Clinical predictors of termination and clinical outcome of catheter ablation for persistent atrial fibrillation. J. Am. Coll. Cardiol. 54(9):788–795, 2009. es_ES
dc.relation.references Meo, M., V. Zarzoso, O. Meste, D. G. Latcu, and N. Saoudi. Catheter ablation outcome prediction in persistent atrial fibrillation using weighted principal component analysis. Biomed. Signal Proc. Con. 8(6):958–968, 2013. es_ES
dc.relation.references Meo, M., V. Zarzoso, O. Meste, D. G. Latcu, and N. Saoudi. Spatial variability of the 12-lead surface ECG as a tool for noninvasive prediction of catheter ablation outcome in persistent atrial fibrillation. IEEE Trans. Biomed. Eng. 60(1):20–7, 2013. es_ES
dc.relation.references Nademanee, K., J. McKenzie, E. Kosar, M. Schwab, B. Sunsaneewitayakul, T. Vasavakul, C. Khunnawat, and T. Ngarmukos. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43(11):2044–53, 2004. es_ES
dc.relation.references Narayan, S. M., D. E. Krummen, K. Shivkumar, P. Clopton, W.-J. Rappel, and J. M. Miller. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial J. Am. Coll. Cardiol. 60(7):628–636, 2012. es_ES
dc.relation.references Nattel, S., and M. Harada. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J. Am. Coll. Cardiol. 63(22):2335–2345, 2014. es_ES
dc.relation.references Nault, I., N. Lellouche, S. Matsuo, S. Knecht, M. Wright, K.-T. Lim, F. Sacher, P. Platonov, A. Deplagne, P. Bordachar, N. Derval, M. D. O’Neill, G. J. Klein, M. Hocini, P. Jaïs, J. Clémenty, and M. Haïssaguerre. Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation. J. Interv. Card. Electrophysiol. 26(1):11–19, 2009. es_ES
dc.relation.references Nishida, K., T. Datino, L. Macle, and S. Nattel. Atrial fibrillation ablation: translating basic mechanistic insights to the patient. J. Am. Coll. Cardiol. 64(8):823–831, 2014. es_ES
dc.relation.references Oral, H., C. Pappone, A. Chugh, E. Good, F. Bogun, F. Pelosi, Jr, E. R. Bates, M. H. Lehmann, G. Vicedomini, G. Augello, E. Agricola, S. Sala, V. Santinelli, and F. Morady. Circumferential pulmonary-vein ablation for chronic atrial fibrillation. N. Engl. J. Med. 354(9):934–41, 2006. es_ES
dc.relation.references Petrutiu, S., A. V. Sahakian, W. Fisher, and S. Swiryn. Manifestation of left atrial events and interatrial frequency gradients in the surface electrocardiogram during atrial fibrillation: contributions from posterior leads. J. Cardiovasc. Electrophysiol. 20(11):1231–6, 2009. es_ES
dc.relation.references Polovina, M. M., and T. S. Potpara. Recent advances in antiarrhythmic drug treatment of atrial fibrillation. Recent Pat. Cardiovasc. Drug Discov. 8(2):112–126, 2013. es_ES
dc.relation.references Raine, D., P. Langley, A. Murray, S. S. Furniss, and J. P. Bourke. Surface atrial frequency analysis in patients with atrial fibrillation: assessing the effects of linear left atrial ablation. J. Cardiovasc. Electrophysiol. 16(8):838–44, 2005. es_ES
dc.relation.references Reiffel, J. A. Cardioversion for atrial fibrillation: treatment options and advances. Pacing Clin. Electrophysiol. 32(8):1073–1084, 2009. es_ES
dc.relation.references Shah, R. U., J. V. Freeman, D. Shilane, P. J. Wang, A. S. Go, and M. A. Hlatky. Procedural complications, rehospitalizations, and repeat procedures after catheter ablation for atrial fibrillation. J. Am. Coll. Cardiol. 59(2):143–149, 2012. es_ES
dc.relation.references Sheikh, A., N. J. Patel, N. Nalluri, K. Agnihotri, J. Spagnola, A. Patel, D. Asti, R. Kanotra, H. Khan, C. Savani, S. Arora, N. Patel, B. Thakkar, N. Patel, D. Pau, A. O. Badheka, A. Deshmukh, M. Kowalski, J. Viles-Gonzalez, and H. Paydak. Trends in hospitalization for atrial fibrillation: epidemiology, cost, and implications for the future. Prog. Cardiovas. Dis. 2015. es_ES
dc.relation.references Singh, S. M., E. K. Heist, J. S. Koruth, C. D. Barrett, J. N. Ruskin, and M. C. Mansour. The relationship between electrogram cycle length and dominant frequency in patients with persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 20(12):1336–1342, 2009. es_ES
dc.relation.references Sörnmo, L., and P. Laguna. Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier Academic Press, 2005. es_ES
dc.relation.references Stridh, M., A. Bollmann, S. B. Olsson, and L. Sörnmo. Detection and feature extraction of atrial tachyarrhythmias. a three stage method of time-frequency analysis. IIEEE Eng. Med. Biol. Mag. 25(6):31–9, 2006. es_ES
dc.relation.references Stridh, M., D. Husser, A. Bollmann, and L. Sörnmo. Waveform characterization of atrial fibrillation using phase information. IEEE Trans. Biomed. Eng. 56(4):1081–9, 2009. es_ES
dc.relation.references Stridh, M., L. Sornmo, C. J. Meurling, and S. B. Olsson. Sequential characterization of atrial tachyarrhythmias based on ECG time-frequency analysis. IEEE Trans. Biomed. Eng. 51(1):100–114, 2004. es_ES
dc.relation.references Takahashi, Y., P. Sanders, P. Jaïs, M. Hocini, R. Dubois, M. Rotter, T. Rostock, C. J. Nalliah, F. Sacher, J. Clémenty, and M. Haïssaguerre. Organization of frequency spectra of atrial fibrillation: relevance to radiofrequency catheter ablation. J. Cardiovasc. Electrophysiol. 17(4):382–388, 2006. es_ES
dc.relation.references Welch, P. D. Use of fast Fourier transform for estimation of power spectra: a method based on time averaging over short modified periodograms. IEEE Trans. Audio Electroacustics 15(2):70–73, 1967. es_ES
dc.relation.references Woods, C. E., and J. Olgin. Atrial fibrillation therapy now and in the future: drugs, biologicals, and ablation. Circ. Res. 114(9):1532–1546, 2014. es_ES
dc.relation.references Xi, Q., A. V. Sahakian, and S. Swiryn. The effect of qrs cancellation on atrial fibrillatory wave signal characteristics in the surface electrocardiogram. J. Electrocardiol. 36(3):243–9, 2003. es_ES
dc.relation.references Yiin, G. S., D. P. Howard, N. L. Paul, Z. Mehta, and P. M. Rothwell. Incidence, outcome and future projections of atrial fibrillation-related stroke and systemic embolism at age $$>=$$ > = 80 years: 10-year results of a population-based study. J. Neurol. Neurosurg. Psychiatry 84(11):e2, 2013. es_ES
dc.relation.references Yoshida, K., and K. Aonuma. Catheter ablation of atrial fibrillation: past, present, and future directions. J. Arrhythm. 28(2):83–90, 2012. es_ES
dc.relation.references Yoshida, K., A. Chugh, E. Good, T. Crawford, J. Myles, S. Veerareddy, S. Billakanty, W. S. Wong, M. Ebinger, F. Pelosi, K. Jongnarangsin, F. Bogun, F. Morady, and H. Oral. A critical decrease in dominant frequency and clinical outcome after catheter ablation of persistent atrial fibrillation. Heart Rhythm 7(3):295–302, 2010. es_ES
dc.relation.references Yoshida, K., A. Chugh, M. Ulfarsson, E. Good, M. Kuhne, T. Crawford, J. F. Sarrazin, N. Chalfoun, D. Wells, W. Boonyapisit, S. Veerareddy, S. Billakanty, W. S. Wong, K. Jongnarangsin, F. Pelosi, Jr., F. Bogun, F. Morady, and H. Oral. Relationship between the spectral characteristics of atrial fibrillation and atrial tachycardias that occur after catheter ablation of atrial fibrillation. Heart Rhythm 6(1):11–7, 2009. es_ES
dc.relation.references Yoshida, K., M. Ulfarsson, H. Tada, A. Chugh, E. Good, M. Kühne, T. Crawford, J. F. Sarrazin, N. Chalfoun, D. Wells, K. Jongnarangsin, F. Pelosi, F. Bogun, F. Morady, and H. Oral. Complex electrograms within the coronary sinus: time- and frequency-domain characteristics, effects of antral pulmonary vein isolation, and relationship to clinical outcome in patients with paroxysmal and persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 19(10):1017–1023, 2008. es_ES


This item appears in the following Collection(s)

Show simple item record