Mostrar el registro sencillo del ítem
dc.contributor.author | Rienzo, Alessandro | es_ES |
dc.contributor.author | Poveda Huertes, Daniel | es_ES |
dc.contributor.author | Aydin, Selcan | es_ES |
dc.contributor.author | Buchler, Nicolas E. | es_ES |
dc.contributor.author | Pascual-Ahuir Giner, María Desamparados | es_ES |
dc.contributor.author | Proft, Markus Hans | es_ES |
dc.date.accessioned | 2017-03-13T10:57:18Z | |
dc.date.available | 2017-03-13T10:57:18Z | |
dc.date.issued | 2015-11 | |
dc.identifier.issn | 0270-7306 | |
dc.identifier.uri | http://hdl.handle.net/10251/78703 | |
dc.description.abstract | Cells respond to environmental stimuli by fine-tuned regulation of gene expression. Here we investigated the dose-dependent modulation of gene expression at high temporal resolution in response to nutrient and stress signals in yeast. The GAL1 activity in cell populations is modulated in a well-defined range of galactose concentrations, correlating with a dynamic change of histone remodeling and RNA polymerase II (RNAPII) association. This behavior is the result of a heterogeneous induction delay caused by decreasing inducer concentrations across the population. Chromatin remodeling appears to be the basis for the dynamic GAL1 expression, because mutants with impaired histone dynamics show severely truncated dose-response profiles. In contrast, the GRE2 promoter operates like a rapid off/on switch in response to increasing osmotic stress, with almost constant expression rates and exclusively temporal regulation of histone remodeling and RNAPII occupancy. The Gal3 inducer and the Hog1 mitogen-activated protein (MAP) kinase seem to determine the different dose-response strategies at the two promoters. Accordingly, GAL1 becomes highly sensitive and dose independent if previously stimulated because of residual Gal3 levels, whereas GRE2 expression diminishes upon repeated stimulation due to acquired stress resistance. Our analysis reveals important differences in the way dynamic signals create dose-sensitive gene expression outputs. | es_ES |
dc.description.sponsorship | This work was supported by grants from Ministerio de Economia y Competitividad (BFU2011-23326), Generalitat de Valencia (ACOMP2011/031), and the NIH Director's New Innovator Award (DP2 OD008654-01). Alessandro Rienzo was a recipient of a predoctoral FPI grant from Ministerio de Economia y Competitividad. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society for Microbiology | es_ES |
dc.relation.ispartof | Molecular and Cellular Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | RNA-polymerase-II | es_ES |
dc.subject | Graded transcriptional responses | es_ES |
dc.subject | Saccharomyces cerevisiae | es_ES |
dc.subject | In-vivo | es_ES |
dc.subject | MAP kinase | es_ES |
dc.subject | Expression program | es_ES |
dc.subject | Nuclear periphery | es_ES |
dc.subject | Oxidative stress | es_ES |
dc.subject | Cellular memory | es_ES |
dc.subject | Osmotic stress | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1128/MCB.00729-15 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH//DP2 OD008654-01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2011%2F031/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Rienzo, A.; Poveda Huertes, D.; Aydin, S.; Buchler, NE.; Pascual-Ahuir Giner, MD.; Proft, MH. (2015). Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Molecular and Cellular Biology. 35(21):3669-3683. https://doi.org/10.1128/MCB.00729-15 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1128/MCB.00729-15 | es_ES |
dc.description.upvformatpinicio | 3669 | es_ES |
dc.description.upvformatpfin | 3683 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 21 | es_ES |
dc.relation.senia | 303448 | es_ES |
dc.identifier.eissn | 1098-5549 | |
dc.identifier.pmcid | PMC4589597 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | National Institutes of Health, EEUU | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Gasch, A. P., & Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. Functional & Integrative Genomics, 2(4-5), 181-192. doi:10.1007/s10142-002-0058-2 | es_ES |
dc.description.references | Hahn, S., & Young, E. T. (2011). Transcriptional Regulation inSaccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators. Genetics, 189(3), 705-736. doi:10.1534/genetics.111.127019 | es_ES |
dc.description.references | Dos Santos, S. C. (2012). Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Frontiers in Genetics, 3. doi:10.3389/fgene.2012.00063 | es_ES |
dc.description.references | Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241 | es_ES |
dc.description.references | Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046 | es_ES |
dc.description.references | Morano, K. A., Grant, C. M., & Moye-Rowley, W. S. (2011). The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae. Genetics, 190(4), 1157-1195. doi:10.1534/genetics.111.128033 | es_ES |
dc.description.references | De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055 | es_ES |
dc.description.references | Takahashi, S., & Pryciak, P. M. (2008). Membrane Localization of Scaffold Proteins Promotes Graded Signaling in the Yeast MAP Kinase Cascade. Current Biology, 18(16), 1184-1191. doi:10.1016/j.cub.2008.07.050 | es_ES |
dc.description.references | Cai, L., Dalal, C. K., & Elowitz, M. B. (2008). Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature, 455(7212), 485-490. doi:10.1038/nature07292 | es_ES |
dc.description.references | Giorgetti, L., Siggers, T., Tiana, G., Caprara, G., Notarbartolo, S., Corona, T., … Natoli, G. (2010). Noncooperative Interactions between Transcription Factors and Clustered DNA Binding Sites Enable Graded Transcriptional Responses to Environmental Inputs. Molecular Cell, 37(3), 418-428. doi:10.1016/j.molcel.2010.01.016 | es_ES |
dc.description.references | Hao, N., & O’Shea, E. K. (2011). Signal-dependent dynamics of transcription factor translocation controls gene expression. Nature Structural & Molecular Biology, 19(1), 31-39. doi:10.1038/nsmb.2192 | es_ES |
dc.description.references | Stewart-Ornstein, J., Nelson, C., DeRisi, J., Weissman, J. S., & El-Samad, H. (2013). Msn2 Coordinates a Stoichiometric Gene Expression Program. Current Biology, 23(23), 2336-2345. doi:10.1016/j.cub.2013.09.043 | es_ES |
dc.description.references | Hao, N., Budnik, B. A., Gunawardena, J., & O’Shea, E. K. (2013). Tunable Signal Processing Through Modular Control of Transcription Factor Translocation. Science, 339(6118), 460-464. doi:10.1126/science.1227299 | es_ES |
dc.description.references | Lam, F. H., Steger, D. J., & O’Shea, E. K. (2008). Chromatin decouples promoter threshold from dynamic range. Nature, 453(7192), 246-250. doi:10.1038/nature06867 | es_ES |
dc.description.references | Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13 | es_ES |
dc.description.references | Sellick, C. A., Campbell, R. N., & Reece, R. J. (2008). Chapter 3 Galactose Metabolism in Yeast—Structure and Regulation of the Leloir Pathway Enzymes and the Genes Encoding Them. International Review of Cell and Molecular Biology, 111-150. doi:10.1016/s1937-6448(08)01003-4 | es_ES |
dc.description.references | Kumar, P. R., Yu, Y., Sternglanz, R., Johnston, S. A., & Joshua-Tor, L. (2008). NADP Regulates the Yeast GAL Induction System. Science, 319(5866), 1090-1092. doi:10.1126/science.1151903 | es_ES |
dc.description.references | Thoden, J. B., Ryan, L. A., Reece, R. J., & Holden, H. M. (2008). The Interaction between an Acidic Transcriptional Activator and Its Inhibitor. Journal of Biological Chemistry, 283(44), 30266-30272. doi:10.1074/jbc.m805200200 | es_ES |
dc.description.references | Egriboz, O., Jiang, F., & Hopper, J. E. (2011). Rapid GAL Gene Switch of Saccharomyces cerevisiae Depends on Nuclear Gal3, Not Nucleocytoplasmic Trafficking of Gal3 and Gal80. Genetics, 189(3), 825-836. doi:10.1534/genetics.111.131839 | es_ES |
dc.description.references | Jiang, F., Frey, B. R., Evans, M. L., Friel, J. C., & Hopper, J. E. (2009). Gene Activation by Dissociation of an Inhibitor from a Transcriptional Activation Domain. Molecular and Cellular Biology, 29(20), 5604-5610. doi:10.1128/mcb.00632-09 | es_ES |
dc.description.references | Lavy, T., Kumar, P. R., He, H., & Joshua-Tor, L. (2012). The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes & Development, 26(3), 294-303. doi:10.1101/gad.182691.111 | es_ES |
dc.description.references | Bhaumik, S. R. (2001). SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes & Development, 15(15), 1935-1945. doi:10.1101/gad.911401 | es_ES |
dc.description.references | Brown, C. E. (2001). Recruitment of HAT Complexes by Direct Activator Interactions with the ATM-Related Tra1 Subunit. Science, 292(5525), 2333-2337. doi:10.1126/science.1060214 | es_ES |
dc.description.references | Jeong, C.-J., Yang, S.-H., Xie, Y., Zhang, L., Johnston, S. A., & Kodadek, T. (2001). Evidence That Gal11 Protein Is a Target of the Gal4 Activation Domain in the Mediator†. Biochemistry, 40(31), 9421-9427. doi:10.1021/bi010011k | es_ES |
dc.description.references | Koh, S. S., Ansari, A. Z., Ptashne, M., & Young, R. A. (1998). An Activator Target in the RNA Polymerase II Holoenzyme. Molecular Cell, 1(6), 895-904. doi:10.1016/s1097-2765(00)80088-x | es_ES |
dc.description.references | Larschan, E. (2001). The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes & Development, 15(15), 1946-1956. doi:10.1101/gad.911501 | es_ES |
dc.description.references | Lemieux, K., & Gaudreau, L. (2004). Targeting of Swi/Snf to the yeast GAL1 UASG requires the Mediator, TAFIIs, and RNA polymerase II. The EMBO Journal, 23(20), 4040-4050. doi:10.1038/sj.emboj.7600416 | es_ES |
dc.description.references | De Nadal, E., & Posas, F. (2009). Multilayered control of gene expression by stress-activated protein kinases. The EMBO Journal, 29(1), 4-13. doi:10.1038/emboj.2009.346 | es_ES |
dc.description.references | Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123 | es_ES |
dc.description.references | Proft, M., & Struhl, K. (2002). Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 9(6), 1307-1317. doi:10.1016/s1097-2765(02)00557-9 | es_ES |
dc.description.references | Brickner, D. G., Cajigas, I., Fondufe-Mittendorf, Y., Ahmed, S., Lee, P.-C., Widom, J., & Brickner, J. H. (2007). H2A.Z-Mediated Localization of Genes at the Nuclear Periphery Confers Epigenetic Memory of Previous Transcriptional State. PLoS Biology, 5(4), e81. doi:10.1371/journal.pbio.0050081 | es_ES |
dc.description.references | Kundu, S., Horn, P. J., & Peterson, C. L. (2007). SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes & Development, 21(8), 997-1004. doi:10.1101/gad.1506607 | es_ES |
dc.description.references | Kundu, S., & Peterson, C. L. (2010). Dominant Role for Signal Transduction in the Transcriptional Memory of Yeast GAL Genes. Molecular and Cellular Biology, 30(10), 2330-2340. doi:10.1128/mcb.01675-09 | es_ES |
dc.description.references | Zacharioudakis, I., Gligoris, T., & Tzamarias, D. (2007). A Yeast Catabolic Enzyme Controls Transcriptional Memory. Current Biology, 17(23), 2041-2046. doi:10.1016/j.cub.2007.10.044 | es_ES |
dc.description.references | Winzeler, E. A. (1999). Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901 | es_ES |
dc.description.references | Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., … Weissman, J. S. (2003). Global analysis of protein expression in yeast. Nature, 425(6959), 737-741. doi:10.1038/nature02046 | es_ES |
dc.description.references | Mason, P. B., & Struhl, K. (2003). The FACT Complex Travels with Elongating RNA Polymerase II and Is Important for the Fidelity of Transcriptional Initiation In Vivo. Molecular and Cellular Biology, 23(22), 8323-8333. doi:10.1128/mcb.23.22.8323-8333.2003 | es_ES |
dc.description.references | Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905 | es_ES |
dc.description.references | Alberti, S., Gitler, A. D., & Lindquist, S. (2007). A suite of Gateway®cloning vectors for high-throughput genetic analysis inSaccharomyces cerevisiae. Yeast, 24(10), 913-919. doi:10.1002/yea.1502 | es_ES |
dc.description.references | Mazo-Vargas, A., Park, H., Aydin, M., & Buchler, N. E. (2014). Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy. Molecular Biology of the Cell, 25(22), 3699-3708. doi:10.1091/mbc.e14-07-1187 | es_ES |
dc.description.references | Kuras, L., & Struhl, K. (1999). Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature, 399(6736), 609-613. doi:10.1038/21239 | es_ES |
dc.description.references | Kvarnström, M., Logg, K., Diez, A., Bodvard, K., & Käll, M. (2008). Image analysis algorithms for cell contour recognition in budding yeast. Optics Express, 16(17), 12943. doi:10.1364/oe.16.012943 | es_ES |
dc.description.references | Acar, M., Becskei, A., & van Oudenaarden, A. (2005). Enhancement of cellular memory by reducing stochastic transitions. Nature, 435(7039), 228-232. doi:10.1038/nature03524 | es_ES |
dc.description.references | Acar, M., Pando, B. F., Arnold, F. H., Elowitz, M. B., & van Oudenaarden, A. (2010). A General Mechanism for Network-Dosage Compensation in Gene Circuits. Science, 329(5999), 1656-1660. doi:10.1126/science.1190544 | es_ES |
dc.description.references | Biggar, S. R. (2001). Cell signaling can direct either binary or graded transcriptional responses. The EMBO Journal, 20(12), 3167-3176. doi:10.1093/emboj/20.12.3167 | es_ES |
dc.description.references | Gandhi, S. J., Zenklusen, D., Lionnet, T., & Singer, R. H. (2010). Transcription of functionally related constitutive genes is not coordinated. Nature Structural & Molecular Biology, 18(1), 27-34. doi:10.1038/nsmb.1934 | es_ES |
dc.description.references | Abramczyk, D., Holden, S., Page, C. J., & Reece, R. J. (2011). Interplay of a Ligand Sensor and an Enzyme in Controlling Expression of the Saccharomyces cerevisiae GAL Genes. Eukaryotic Cell, 11(3), 334-342. doi:10.1128/ec.05294-11 | es_ES |
dc.description.references | Ahmed, S., & Brickner, J. H. (2007). Regulation and epigenetic control of transcription at the nuclear periphery. Trends in Genetics, 23(8), 396-402. doi:10.1016/j.tig.2007.05.009 | es_ES |
dc.description.references | Babazadeh, R., Adiels, C. B., Smedh, M., Petelenz-Kurdziel, E., Goksör, M., & Hohmann, S. (2013). Osmostress-Induced Cell Volume Loss Delays Yeast Hog1 Signaling by Limiting Diffusion Processes and by Hog1-Specific Effects. PLoS ONE, 8(11), e80901. doi:10.1371/journal.pone.0080901 | es_ES |
dc.description.references | Miermont, A., Waharte, F., Hu, S., McClean, M. N., Bottani, S., Leon, S., & Hersen, P. (2013). Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proceedings of the National Academy of Sciences, 110(14), 5725-5730. doi:10.1073/pnas.1215367110 | es_ES |
dc.description.references | Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016 | es_ES |
dc.description.references | Guan, Q., Haroon, S., Bravo, D. G., Will, J. L., & Gasch, A. P. (2012). Cellular Memory of Acquired Stress Resistance inSaccharomyces cerevisiae. Genetics, 192(2), 495-505. doi:10.1534/genetics.112.143016 | es_ES |
dc.description.references | Pelet, S., Rudolf, F., Nadal-Ribelles, M., de Nadal, E., Posas, F., & Peter, M. (2011). Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression. Science, 332(6030), 732-735. doi:10.1126/science.1198851 | es_ES |