- -

Design of novel bio-gated nanomaterials for sensing and therapeutic applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design of novel bio-gated nanomaterials for sensing and therapeutic applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Coll Merino, Mª Carmen es_ES
dc.contributor.advisor Marcos Martínez, María Dolores es_ES
dc.contributor.advisor Martínez Mañez, Ramón es_ES
dc.contributor.author Oroval Cucarella, María del Mar es_ES
dc.date.accessioned 2017-03-20T09:10:28Z
dc.date.available 2017-03-20T09:10:28Z
dc.date.created 2017-02-16 es_ES
dc.date.issued 2017-03-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/78836
dc.description Tesis por compendio es_ES
dc.description.abstract The present PhD thesis, entitled "Design of novel bio-gated nanomaterials for sensing and therapeutic applications", is focused on the design, preparation, characterization and evaluation of new smart hybrid organic-inorganic materials for their applications on the field of sensing and controlled drug delivery. The first chapter of this thesis introduces the concept of organic-inorganic hybrid materials containing switchable "gate-like" ensembles and their applications in the detection of chemical and biochemical species and as suitable materials for drug delivery applications. The second chapter describes the preparation of an aptamer-capped mesoporous material for the fluorogenic detection of thrombin in human plasma and serum. For the preparation of the material dye-loaded MCM-41 particles were capped with a thrombin aptamer (TBA). In the presence of thrombin, TBA was displaced from the surface due to the formation of TBA-protein complex, triggering the release of the dye. The capped system was tested in simulated human blood plasma and in PBS buffer with 10% of human serum and achieved a low limit of detection (LOD) for thrombin. Moreover, the prepared material displayed great selectivity for thrombin in the presence of other non-exclusive binding proteins. The gated-nanomaterial resulted suitable to perform an accurate thrombin detection in human serum. In the third chapter a new fluorogenic sensing nanoprobe for the detection of As(III) is described. The system consists of the combination of MSNs with an aptamer (Ars-3), which possesses a very high affinity to As(III), as a pore blocking agent. The sensitivity of the nanocarrier for As(III) was further studied. Furthermore, the selectivity of the nanocarrier towards As(III) in the presence of other cations was also successfully verified. In addition, the sensor allowed accurate As(III) determination in real media. The fourth chapter reports a novel proof-of-concept to detect Mycoplasma genomic DNA and cocaine. The new approach combined gated mesoporous silica nanoparticles and surface-enhanced Raman scattering (SERS) spectroscopy. In particular, two gated-hybrid mesoporous materials loaded with a SERS reporter and capped with suitable oligonucleotide sequences to detect Mycoplasma genomic DNA or cocaine, were prepared. Release of the reporter was triggered from the different materials by the presence of the corresponding target, and was detected by SERS upon adsorption on gold nanotriangles. This novel procedure allowed detecting Mycoplasma genomic DNA and cocaine with a high selectivity and sensitivity. The fifth chapter describes the development of a nanodevice able to deliver insulin as a function of the glucose concentration, in simulated human blood plasma. The glucose-driven nanomaterial consisted of ß-cyclodextrin-modified glucose oxidase (CD-GOx)-capped silica nanoparticles loaded with insulin. The reaction of glucose by the capping enzyme (GOx) triggered insulin release in a self-regulated manner. Furthermore, the response to glucose was found to be selective and other saccharides were unable to deliver the entrapped insulin. We hope the results obtained in this thesis may inspire further works to design smart nanodevices with application in analytical chemistry, clinical or environmental assays and self-regulated drug delivery systems. en_EN
dc.description.abstract La presente tesis doctoral, titulada "Diseño de nuevos nanomateriales con puertas moleculares biológicas para aplicaciones de detección y terapéuticas", se centra en el diseño, preparación, caracterización y evaluación de nuevos materiales híbridos orgánicos-inorgánicos inteligentes para su aplicación en el campo de la detección y liberación controlada de fármacos. El primer capítulo de la presente tesis introduce el concepto de los materiales híbridos orgánicos-inorgánicos funcionalizados con puertas moleculares y su aplicación en la detección de especies químicas y bioquímicas de interés y como materiales adecuados para su aplicación en liberación controlada de fármacos. El segundo capítulo describe la preparación de un material mesoporoso con aptámeros como puerta moleculares, para la detección fluorogénica de trombina en plasma y suero humano. En la preparación del material se utilizaron partículas de MCM-41 cargadas con un colorante y cuyos poros se taparon con un aptámero que reconoce la proteína trombina (TBA). En presencia de trombina el TBA se desplazó de la superficie debido a la formación del complejo TBA-proteína permitiendo así la liberación del colorante. El funcionamiento del material se evaluó en plasma humano simulado y en PBS con 10% de suero humano y se alcanzó un bajo límite de detección (LOD) para trombina. Además, el material resultó ser selectivo para trombina en presencia de otras proteínas no específicas. El nanomaterial resultó adecuado para la detección precisa de trombina en suero humano. En el tercer capítulo se describe una nuevo nanomaterial sensor para la detección fluorogénica de As (III). El sistema consiste en la combinación de nanopartículas mesoporosas de sílice (MSNs) con un aptámero (Ars-3), que posee una alta afinidad por el As(III), como agente bloqueante de los poros. Además, se estudió la sensibilidad del nanomaterial para As(III). Por otro lado, se demostró la selectividad del nanomaterial para As(III) en presencia de otros cationes. Adicionalmente, el sensor permitió una determinación precisa de As(III) en un medio real. El cuarto capítulo describe una novedosa prueba de concepto para la detección de ADN genómico de Mycoplasma y cocaína. El nuevo enfoque combinó MSNs con puertas moleculares y espectroscopía Raman amplificada en superficie (SERS). En particular, se prepararon dos materiales híbridos con puertas moleculares y cargados con un reportero SERS. Como puertas moleculares se utilizaron dos secuencias de oligonucleótidos para detectar ADN genómico de Mycoplasma o cocaína. La liberación del reportero SERS desde los materiales se indujo por la presencia del analito correspondiente, y fue detectado por SERS tras su adsorción sobre nanotríangulos de oro. Este nuevo procedimiento permitió detectar ADN genómico de Mycoplasma y cocaína con alta selectividad y sensibilidad. El quinto capítulo describe el desarrollo de un nanodispositivo capaz de liberar insulina en función de la concentración de glucosa en plasma sanguíneo humano simulado. El nanomaterial consiste en nanopartículas de sílice funcionalizadas cuyos poros se taparon con la enzima glucosa-oxidasa modificada con ß-ciclodextrinas (CD-GOx) y cargadas con insulina. La reacción de la glucosa por la enzima bloquenate (GOx) desencadenó la liberación autorregulada de insulina. Asimismo, se encontró que la respuesta a la glucosa era selectiva y otros azúcares no indujeron la liberación de la insulina cargada. Esperamos que los resultados obtenidos en esta tesis puedan inspirar otros trabajos para diseñar nanodispositivos inteligentes con aplicación en la química analítica, ensayos clínicos o medioambientales y en sistemas de liberación autorregulada de fármacos. es_ES
dc.description.abstract La present tesi doctoral, titulada "Disseny de nous nanomaterials amb portes moleculars biològiques per a aplicacions de detecció i terapèutiques", es centra en el disseny, preparació, caracterització i avaluació de nous materials híbrids orgànics-inorgànics intel·ligents per a la seua aplicació en el camp de la detecció i lliberació controlada de fàrmacs. El primer capítol de la present tesi introduïx el concepte dels materials híbrids orgànics-inorgànics funcionalizats amb portes moleculars i la seua aplicació en la detecció d'espècies químiques i bioquímiques d'interés i com a materials adequats per a la lliberació controlada de fàrmacs. El segon capítol descriu la preparació d'un material mesoporós amb aptámeros com a porta molecular, per a la detecció fluorogénica de trombina en plasma i sèrum humà. En la preparació del material es van utilitzar partícules de MCM-41 carregades amb un colorant i els porus del qual es van tapar amb un aptàmer que reconeix la proteïna trombina (TBA). En presència de trombina el TBA es va desplaçar de la superfície a causa de la formació del complex TBA-proteïna permetent així l'alliberament del colorant. El funcionament del material es va avaluar en plasma humà simulat i en PBS amb 10% de sèrum humà i es va aconseguir un baix límit de detecció (LOD) per a trombina. A més, el material va resultar ser selectiu para trombina en presència d'altres proteïnes no específiques. El nanomaterial va resultar adequat per a la detecció precisa de trombina en sèrum humà. En el tercer capítol es descriu un nou nanomaterial sensor per a la detecció fluorogènica d'As(III). El sistema consistix en la combinació de nanopartícules mesoporoses de sílice (MSNs) amb un aptàmer (Ars-3), que posseïx una alta afinitat per l'As(III), com a agent bloquejant dels porus. A més, es va estudiar la sensibilitat del nanomaterial per a As(III). D'altra banda, es va demostrar la selectivitat del nanomaterial per a As(III) en presència d'altres cations. Addicionalment, el sensor va permetre una determinació precisa d'As(III) en un medi real. El Quart capítol descriu una nova prova de concepte per a la detecció de ADN genòmic de Mycoplasma i cocaïna. El nou enfocament va combinar MSNs amb portes moleculars i espectroscòpia Raman amplificada en superfície (SERS). Concretament, es van preparar dos materials híbrids amb portes moleculars i carregats amb un reporter SERS. Com a portes moleculars es van utilitzar dos seqüències d'oligonucleòtids per a detectar ADN genòmic de Mycoplasma o cocaïna. L'alliberament del reporter SERS des dels materials es va induir per la presència de l'anàlit corresponent, i va ser detectada per SERS després de la seua adsorció sobre nanotriangles d'or. Este nou procediment va permetre detectar ADN genòmic de Mycoplasma i cocaïna amb alta selectivitat i sensibilitat. El quint capítol descriu el desenrotllament d'un nanodispositiu capaç d'alliberar insulina en funció de la concentració de glucosa en plasma sanguini humà simulat. El nanomaterial consistix en nanopartícules de sílice funcionalizades els porus del qual es van tapar amb l'enzim glucosa-oxidasa modificada amb ß-ciclodextrinas (CD-GOx) i carregades amb insulina. La reacció de la glucosa per l'enzim bloquejant (GOx) va desencadenar l'alliberament autoregulat d'insulina. Així mateix, es va trobar que la resposta a la glucosa va ser selectiva i altres sucres no van induir la lliberació de la insulina carregada. Esperem que els resultats obtinguts en aquesta tesi puguen inspirar nus treballs per a dissenyar nanodispositius intel·ligents amb aplicació en la química analítica, assajos clínics o mediambientals i en sistemes de lliberació autoregulada de fàrmacs. ca_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hybrid materials es_ES
dc.subject Controlled reléase es_ES
dc.subject gated materials es_ES
dc.title Design of novel bio-gated nanomaterials for sensing and therapeutic applications es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/78836 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Oroval Cucarella, MDM. (2017). Design of novel bio-gated nanomaterials for sensing and therapeutic applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/78836 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\9932 es_ES
dc.description.compendio Compendio es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem