Mostrar el registro sencillo del ítem
dc.contributor.author | Paris-Carrizo, Cecilia Gertrudis | es_ES |
dc.contributor.author | Martín-García, Nuria | es_ES |
dc.contributor.author | Martínez-Triguero, Joaquín | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2017-03-20T11:34:43Z | |
dc.date.available | 2017-03-20T11:34:43Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1144-0546 | |
dc.identifier.uri | http://hdl.handle.net/10251/78842 | |
dc.description.abstract | [EN] A rationalized combination of alkali cations and bulky dicationic organic structure directing agents (OSDAs) has allowed the synthesis of the Al-rich MTW zeolites with Si/Al ratios of similar to 12 and large pore accessibility. Al-27 MAS NMR spectroscopy indicates that most of the aluminum atoms are in tetrahedral coordination in framework positions, and in situ infrared pyridine adsorption/desorption spectroscopy reveals strong Bronsted acidity after cationic exchange for the Al-rich MTW. In addition, another MTW material with a Si/Al ratio of 30 has been synthesized under alkali-free conditions using a bulky dicationic molecule such as OSDA, the lowest Si/Al ratio being achieved for a MTW zeolite synthesized in the absence of alkali-cations in the synthesis media. The catalytic activity of these MTW materials has been tested for the n-decane cracking reaction, achieving higher catalytic activities and olefin yields than other related large pore zeolites. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), Consolider Ingenio 2010-Multicat and, MAT2012-37160 is acknowledged. | |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | New Journal of Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | OSDA-Free synthesis | es_ES |
dc.subject | Crystal-structure | es_ES |
dc.subject | ZSM-12 zeolite | es_ES |
dc.subject | Framework | es_ES |
dc.subject | Catalysts | es_ES |
dc.subject | Systems | es_ES |
dc.subject | Beta | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C5NJ01203A | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ?ESPONJAS DE PROTONES? COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Paris-Carrizo, CG.; Martín-García, N.; Martínez-Triguero, J.; Moliner Marin, M.; Corma Canós, A. (2016). Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents. New Journal of Chemistry. 40(5):4140-4145. https://doi.org/10.1039/C5NJ01203A | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c5nj01203a | es_ES |
dc.description.upvformatpinicio | 4140 | es_ES |
dc.description.upvformatpfin | 4145 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 40 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 297086 | es_ES |
dc.identifier.eissn | 1369-9261 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | LaPierre, R. B., Rohrman, A. C., Schlenker, J. L., Wood, J. D., Rubin, M. K., & Rohrbaugh, W. J. (1985). The framework topology of ZSM-12: A high-silica zeolite. Zeolites, 5(6), 346-348. doi:10.1016/0144-2449(85)90121-6 | es_ES |
dc.description.references | Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-d | es_ES |
dc.description.references | Fyfe, C. A., Gies, H., Kokotailo, G. T., Marler, B., & Cox, D. E. (1990). Crystal structure of silica-ZSM-12 by the combined use of hgh-resolution solid-state MAS NMR spectroscopy and synchrotron x-ray powder diffraction. The Journal of Physical Chemistry, 94(9), 3718-3721. doi:10.1021/j100372a066 | es_ES |
dc.description.references | Reddy, K. M., Moudrakovski, I., & Sayari, A. (1994). VS-12: a novel large-pore vanadium silicate with ZSM-12 structure. Journal of the Chemical Society, Chemical Communications, (12), 1491. doi:10.1039/c39940001491 | es_ES |
dc.description.references | Millini, R., Frigerio, F., Bellussi, G., Pazzuconi, G., Perego, C., Pollesel, P., & Romano, U. (2003). A priori selection of shape-selective zeolite catalysts for the synthesis of 2,6-dimethylnaphthalene. Journal of Catalysis, 217(2), 298-309. doi:10.1016/s0021-9517(03)00071-x | es_ES |
dc.description.references | Perego, C., Amarilli, S., Millini, R., Bellussi, G., Girotti, G., & Terzoni, G. (1996). Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis. Microporous Materials, 6(5-6), 395-404. doi:10.1016/0927-6513(96)00037-5 | es_ES |
dc.description.references | Jones, C. (1999). m-Xylene reactions over zeolites with unidimensional pore systems. Applied Catalysis A: General, 181(2), 289-303. doi:10.1016/s0926-860x(98)00401-3 | es_ES |
dc.description.references | Zhang, W., & Smirniotis, P. G. (1999). Catalysis Letters, 60(4), 223-228. doi:10.1023/a:1019079612655 | es_ES |
dc.description.references | Katovic, A., Chiche, B. H., Di Renzo, F., Giordano, G., & Fajula, F. (2000). Influence of the aluminium content on the acidity and catalytic activity of MTW-type zeolites. 12th International Congress on Catalysis, Proceedings of the 12th ICC, 857-862. doi:10.1016/s0167-2991(00)81066-6 | es_ES |
dc.description.references | Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038 | es_ES |
dc.description.references | Kamimura, Y., Iyoki, K., Elangovan, S. P., Itabashi, K., Shimojima, A., & Okubo, T. (2012). OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 163, 282-290. doi:10.1016/j.micromeso.2012.07.014 | es_ES |
dc.description.references | Coulomb, J. P., & Floquet, N. (2008). Determination of zeolite closed porosity in (1D) channel systems (AFI and MTW types). Studies in Surface Science and Catalysis, 913-916. doi:10.1016/s0167-2991(08)80037-7 | es_ES |
dc.description.references | Gopal, S., Yoo, K., & Smirniotis, P. G. (2001). Synthesis of Al-rich ZSM-12 using TEAOH as template. Microporous and Mesoporous Materials, 49(1-3), 149-156. doi:10.1016/s1387-1811(01)00412-7 | es_ES |
dc.description.references | Araujo, A. S., Silva, A. O. S., Souza, M. J. B., Coutinho, A. C. S. L. S., Aquino, J. M. F. B., Moura, J. A., & Pedrosa, A. M. G. (2005). Crystallization of ZSM-12 Zeolite with Different Si/Al Ratio. Adsorption, 11(2), 159-165. doi:10.1007/s10450-005-4909-8 | es_ES |
dc.description.references | Li, J., Lou, L.-L., Xu, C., & Liu, S. (2014). Synthesis, characterization of Al-rich ZSM-12 zeolite and their catalytic performance in liquid-phase tert-butylation of phenol. Catalysis Communications, 50, 97-100. doi:10.1016/j.catcom.2014.03.011 | es_ES |
dc.description.references | Jackowski, A., Zones, S. I., Hwang, S.-J., & Burton, A. W. (2009). Diquaternary Ammonium Compounds in Zeolite Synthesis: Cyclic and PolycyclicN-Heterocycles Connected by Methylene Chains. Journal of the American Chemical Society, 131(3), 1092-1100. doi:10.1021/ja806978f | es_ES |
dc.description.references | Corma, A., Martı́nez-Triguero, J., Valencia, S., Benazzi, E., & Lacombe, S. (2002). IM-5: A Highly Thermal and Hydrothermal Shape-Selective Cracking Zeolite. Journal of Catalysis, 206(1), 125-133. doi:10.1006/jcat.2001.3469 | es_ES |
dc.description.references | Marler, B., Dehnbostel, N., Eulert, H.-H., Gies, H., & Liebau, F. (1986). Studies on clathrasils VIII. Nonasils-[4158], 88SiO2 � 8M8 � 8M9 � 4M20: Synthesis, thermal properties, and crystal structure. Journal of Inclusion Phenomena, 4(4), 339-349. doi:10.1007/bf00656161 | es_ES |
dc.description.references | Pinar, A. B., García, R., Gómez-Hortigüela, L., & Pérez-Pariente, J. (2010). Synthesis of Open Zeolite Structures from Mixtures of Tetramethylammonium and Benzylmethylalkylammonium Cations: A Step Towards Driving Aluminium Location in the Framework. Topics in Catalysis, 53(19-20), 1297-1303. doi:10.1007/s11244-010-9587-4 | es_ES |
dc.description.references | De Baerdemaeker, T., Müller, U., & Yilmaz, B. (2011). Alkali-free synthesis of Al-MTW using 4-cyclohexyl-1,1-dimethylpiperazinium hydroxide as structure directing agent. Microporous and Mesoporous Materials, 143(2-3), 477-481. doi:10.1016/j.micromeso.2011.03.018 | es_ES |
dc.description.references | Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 | es_ES |