- -

Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents

Show simple item record

Files in this item

dc.contributor.author Paris-Carrizo, Cecilia Gertrudis es_ES
dc.contributor.author Martín-García, Nuria es_ES
dc.contributor.author Martínez-Triguero, Joaquín es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2017-03-20T11:34:43Z
dc.date.available 2017-03-20T11:34:43Z
dc.date.issued 2016
dc.identifier.issn 1144-0546
dc.identifier.uri http://hdl.handle.net/10251/78842
dc.description.abstract [EN] A rationalized combination of alkali cations and bulky dicationic organic structure directing agents (OSDAs) has allowed the synthesis of the Al-rich MTW zeolites with Si/Al ratios of similar to 12 and large pore accessibility. Al-27 MAS NMR spectroscopy indicates that most of the aluminum atoms are in tetrahedral coordination in framework positions, and in situ infrared pyridine adsorption/desorption spectroscopy reveals strong Bronsted acidity after cationic exchange for the Al-rich MTW. In addition, another MTW material with a Si/Al ratio of 30 has been synthesized under alkali-free conditions using a bulky dicationic molecule such as OSDA, the lowest Si/Al ratio being achieved for a MTW zeolite synthesized in the absence of alkali-cations in the synthesis media. The catalytic activity of these MTW materials has been tested for the n-decane cracking reaction, achieving higher catalytic activities and olefin yields than other related large pore zeolites. es_ES
dc.description.sponsorship Financial support from the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), Consolider Ingenio 2010-Multicat and, MAT2012-37160 is acknowledged.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation MINECO/SEV 2012-0267 es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ?ESPONJAS DE PROTONES? COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ es_ES
dc.relation.ispartof New Journal of Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject OSDA-Free synthesis es_ES
dc.subject Crystal-structure es_ES
dc.subject ZSM-12 zeolite es_ES
dc.subject Framework es_ES
dc.subject Catalysts es_ES
dc.subject Systems es_ES
dc.subject Beta es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C5NJ01203A
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Paris-Carrizo, CG.; Martín-García, N.; Martínez-Triguero, J.; Moliner Marin, M.; Corma Canós, A. (2016). Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents. New Journal of Chemistry. 40(5):4140-4145. https://doi.org/10.1039/C5NJ01203A es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c5nj01203a es_ES
dc.description.upvformatpinicio 4140 es_ES
dc.description.upvformatpfin 4145 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 297086 es_ES
dc.identifier.eissn 1369-9261
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references LaPierre, R. B., Rohrman, A. C., Schlenker, J. L., Wood, J. D., Rubin, M. K., & Rohrbaugh, W. J. (1985). The framework topology of ZSM-12: A high-silica zeolite. Zeolites, 5(6), 346-348. doi:10.1016/0144-2449(85)90121-6 es_ES
dc.description.references Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-d es_ES
dc.description.references Fyfe, C. A., Gies, H., Kokotailo, G. T., Marler, B., & Cox, D. E. (1990). Crystal structure of silica-ZSM-12 by the combined use of hgh-resolution solid-state MAS NMR spectroscopy and synchrotron x-ray powder diffraction. The Journal of Physical Chemistry, 94(9), 3718-3721. doi:10.1021/j100372a066 es_ES
dc.description.references Reddy, K. M., Moudrakovski, I., & Sayari, A. (1994). VS-12: a novel large-pore vanadium silicate with ZSM-12 structure. Journal of the Chemical Society, Chemical Communications, (12), 1491. doi:10.1039/c39940001491 es_ES
dc.description.references Millini, R., Frigerio, F., Bellussi, G., Pazzuconi, G., Perego, C., Pollesel, P., & Romano, U. (2003). A priori selection of shape-selective zeolite catalysts for the synthesis of 2,6-dimethylnaphthalene. Journal of Catalysis, 217(2), 298-309. doi:10.1016/s0021-9517(03)00071-x es_ES
dc.description.references Perego, C., Amarilli, S., Millini, R., Bellussi, G., Girotti, G., & Terzoni, G. (1996). Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis. Microporous Materials, 6(5-6), 395-404. doi:10.1016/0927-6513(96)00037-5 es_ES
dc.description.references Jones, C. (1999). m-Xylene reactions over zeolites with unidimensional pore systems. Applied Catalysis A: General, 181(2), 289-303. doi:10.1016/s0926-860x(98)00401-3 es_ES
dc.description.references Zhang, W., & Smirniotis, P. G. (1999). Catalysis Letters, 60(4), 223-228. doi:10.1023/a:1019079612655 es_ES
dc.description.references Katovic, A., Chiche, B. H., Di Renzo, F., Giordano, G., & Fajula, F. (2000). Influence of the aluminium content on the acidity and catalytic activity of MTW-type zeolites. 12th International Congress on Catalysis, Proceedings of the 12th ICC, 857-862. doi:10.1016/s0167-2991(00)81066-6 es_ES
dc.description.references Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038 es_ES
dc.description.references Kamimura, Y., Iyoki, K., Elangovan, S. P., Itabashi, K., Shimojima, A., & Okubo, T. (2012). OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 163, 282-290. doi:10.1016/j.micromeso.2012.07.014 es_ES
dc.description.references Coulomb, J. P., & Floquet, N. (2008). Determination of zeolite closed porosity in (1D) channel systems (AFI and MTW types). Studies in Surface Science and Catalysis, 913-916. doi:10.1016/s0167-2991(08)80037-7 es_ES
dc.description.references Gopal, S., Yoo, K., & Smirniotis, P. G. (2001). Synthesis of Al-rich ZSM-12 using TEAOH as template. Microporous and Mesoporous Materials, 49(1-3), 149-156. doi:10.1016/s1387-1811(01)00412-7 es_ES
dc.description.references Araujo, A. S., Silva, A. O. S., Souza, M. J. B., Coutinho, A. C. S. L. S., Aquino, J. M. F. B., Moura, J. A., & Pedrosa, A. M. G. (2005). Crystallization of ZSM-12 Zeolite with Different Si/Al Ratio. Adsorption, 11(2), 159-165. doi:10.1007/s10450-005-4909-8 es_ES
dc.description.references Li, J., Lou, L.-L., Xu, C., & Liu, S. (2014). Synthesis, characterization of Al-rich ZSM-12 zeolite and their catalytic performance in liquid-phase tert-butylation of phenol. Catalysis Communications, 50, 97-100. doi:10.1016/j.catcom.2014.03.011 es_ES
dc.description.references Jackowski, A., Zones, S. I., Hwang, S.-J., & Burton, A. W. (2009). Diquaternary Ammonium Compounds in Zeolite Synthesis: Cyclic and PolycyclicN-Heterocycles Connected by Methylene Chains. Journal of the American Chemical Society, 131(3), 1092-1100. doi:10.1021/ja806978f es_ES
dc.description.references Corma, A., Martı́nez-Triguero, J., Valencia, S., Benazzi, E., & Lacombe, S. (2002). IM-5: A Highly Thermal and Hydrothermal Shape-Selective Cracking Zeolite. Journal of Catalysis, 206(1), 125-133. doi:10.1006/jcat.2001.3469 es_ES
dc.description.references Marler, B., Dehnbostel, N., Eulert, H.-H., Gies, H., & Liebau, F. (1986). Studies on clathrasils VIII. Nonasils-[4158], 88SiO2 � 8M8 � 8M9 � 4M20: Synthesis, thermal properties, and crystal structure. Journal of Inclusion Phenomena, 4(4), 339-349. doi:10.1007/bf00656161 es_ES
dc.description.references Pinar, A. B., García, R., Gómez-Hortigüela, L., & Pérez-Pariente, J. (2010). Synthesis of Open Zeolite Structures from Mixtures of Tetramethylammonium and Benzylmethylalkylammonium Cations: A Step Towards Driving Aluminium Location in the Framework. Topics in Catalysis, 53(19-20), 1297-1303. doi:10.1007/s11244-010-9587-4 es_ES
dc.description.references De Baerdemaeker, T., Müller, U., & Yilmaz, B. (2011). Alkali-free synthesis of Al-MTW using 4-cyclohexyl-1,1-dimethylpiperazinium hydroxide as structure directing agent. Microporous and Mesoporous Materials, 143(2-3), 477-481. doi:10.1016/j.micromeso.2011.03.018 es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES


This item appears in the following Collection(s)

Show simple item record