- -

Tensor product representation of Kothe-Bochner spaces and their dual spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Tensor product representation of Kothe-Bochner spaces and their dual spaces

Show full item record

Calabuig, JM.; Jiménez Fernández, E.; Juan Blanco, MA.; Sánchez Pérez, EA. (2016). Tensor product representation of Kothe-Bochner spaces and their dual spaces. Positivity. 20(1):155-169. doi:10.1007/s11117-015-0347-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/78849

Files in this item

Item Metadata

Title: Tensor product representation of Kothe-Bochner spaces and their dual spaces
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses
Issued date:
Abstract:
We provide a tensor product representation of Kothe-Bochner function spaces of vector valued integrable functions. As an application, we show that the dual space of a Kothe-Bochner function space can be understood as a ...[+]
Subjects: Vector measure , Kothe-Bochner space , Tensor product , Dual space
Copyrigths: Reserva de todos los derechos
Source:
Positivity. (issn: 1385-1292 ) (eissn: 1572-9281 )
DOI: 10.1007/s11117-015-0347-3
Publisher:
Springer Verlag
Publisher version: http://dx.doi. org/10.1007/s11117-015-0347-3
Thanks:
First and third authors are supported by grant MTM201453009-P of the Ministerio de Economia y Competitividad (Spain). Second and fourth authors are supported by grant MTM2012-36740-C02-02 of the Ministerio de Economia y ...[+]
Type: Artículo

References

Bochner, S.: Integration von Funktionen, deren Werte die Elemente eines Vectorraumes sind. Fundamenta Mathematicae 20, 262–276 (1933)

Calabuig, J.M., Delgado, O., Juan, M.A., Sánchez, E.A.: Pérez, On the Banach lattice structure of $$L^1_w$$ L w 1 of a vector measure on a $$\delta $$ δ -ring. Collect. Math. 65, 6567–85 (2014)

Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364(1), 88–103 (2010) [+]
Bochner, S.: Integration von Funktionen, deren Werte die Elemente eines Vectorraumes sind. Fundamenta Mathematicae 20, 262–276 (1933)

Calabuig, J.M., Delgado, O., Juan, M.A., Sánchez, E.A.: Pérez, On the Banach lattice structure of $$L^1_w$$ L w 1 of a vector measure on a $$\delta $$ δ -ring. Collect. Math. 65, 6567–85 (2014)

Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364(1), 88–103 (2010)

Calabuig, J.M., Gregori, P., Sánchez, E.A.: Pérez, Radon-Nikodým derivatives for vector measures belonging to Köthe function spaces. J. Math. Anal. Appl. 348, 469–479 (2008)

Cerdà, J., Hudzik, H., Mastyło, M.: Geometric properties of Köthe-Bochner spaces. Math. Proc. Cambridge Philos. Soc. 120(3), 521–533 (1996)

Chakraborty, N.D., Basu, S.: Spaces of p-tensor integrable functions and related Banach space properties. Real Anal. Exchange 34, 87–104 (2008)

Chakraborty, N.D., Basu, S.: Integration of vector-valued functions with respect to vector measures defined on $$\delta $$ δ -rings. Ill. J. Math. 55(2), 495–508 (2011)

Defant, A., Floret, K.: Tensor norms and operator ideals. North-Holland, Amsterdam (1993)

Delgado, O., Juan, M.A.: Representation of Banach lattices as $$L^{1}_{w}$$ L w 1 spaces of a vector measure defined on a $$\delta -$$ δ - ring. Bull. Belgian Math. Soc. 19, 239–256 (2012)

Diestel, J., Uhl, J.J.: Vector measures. Am. Math. Soc, Providence (1977)

Dobrakov, I.: On integration in Banach spaces, VII. Czechoslovak Math. J. 38, 434–449 (1988)

García-Raffi, L.M., Jefferies, B.: An application of bilinear integration to quantum scattering. J. Math. Anal. Appl. 415, 394–421 (2014)

Gregori Huerta, P.: Espacios de medidas vectoriales. Thesis, Universidad de Valencia, ISBN:8437060591 (2005)

Jefferies, B., Okada, S.: Bilinear integration in tensor products. Rocky Mt. J. Math. 28, 517–545 (1998)

Lewis, D.R.: On integrability and summability in vector spaces. Ill. J. Math. 16, 294–307 (1972)

Lin, P.-K.: Köthe-Bochner function spaces. Birkhauser, Boston (2004)

Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979)

Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domains and integral extensions of operators acting in function spaces. Operator Theory Advances and Applications, vol. 180. Birkhäuser, Basel (2008)

Pallu de La Barriére, R.: Integration of vector functions with respect to vector measures. Studia Univ. Babes-Bolyai Math. 43, 55–93 (1998)

Rodríguez, J.: On integration of vector functions with respect to vector measures. Czechoslovak Math. J. 56, 805–825 (2006)

[-]

This item appears in the following Collection(s)

Show full item record