- -

Modelling Osmotic dehydration of lemon slices using newsweeteners

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling Osmotic dehydration of lemon slices using newsweeteners

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio Arraez, Susana es_ES
dc.contributor.author Capella Hernández, Juan Vicente es_ES
dc.contributor.author Ortolá Ortolá, Mª Dolores es_ES
dc.contributor.author Castelló Gómez, María Luisa es_ES
dc.date.accessioned 2017-03-21T15:50:18Z
dc.date.available 2017-03-21T15:50:18Z
dc.date.issued 2015-09
dc.identifier.issn 0950-5423
dc.identifier.uri http://hdl.handle.net/10251/78892
dc.description.abstract Lemon slices were osmotically dehydrated using the following healthy sweeteners as osmotic agents: tagatose, isomaltulose, oligofructose and aqueous extract of stevia. A kinetic study using a Fickian approach was performed, which also analysed the changes in water activity, total mass, mass of water and mass of soluble solids in lemon slices. The results showed that the greatest value of effective diffusivity (De) in osmodehydrated lemon slices was obtained from a combination of oligofructose and stevia. However, the level of water activity (aw) reached with this syrup was the highest, meaning that the product might be less stable. Additionally, isomaltulose favoured the total mass, whereas tagatose did the opposite. Finally, the syrup recommended for dehydrating lemon slices would be a combination of tagatose, oligofructose and aqueous extract of stevia since its De was similar to the value obtained when only oligofructose and stevia were used, but aw values were lower. es_ES
dc.description.sponsorship The authors would like to thank the Serigio-Andres family for donating the raw materials and also the GVA projects GV/2013/029, GV/2014/012 as well as the Universitat Politecnica de Valencia (Spain) for the financial support given to this research study (UPV PAID-06-12 SP20120889). en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof International Journal of Food Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Isomaltulose es_ES
dc.subject Kinetics es_ES
dc.subject Lemon es_ES
dc.subject Oligofructose es_ES
dc.subject Osmotic dehydration es_ES
dc.subject Stevia es_ES
dc.subject Tagatose es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Modelling Osmotic dehydration of lemon slices using newsweeteners es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ijfs.12859
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2013%2F029/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2014%2F012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12-SP20120889/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Rubio Arraez, S.; Capella Hernández, JV.; Ortolá Ortolá, MD.; Castelló Gómez, ML. (2015). Modelling Osmotic dehydration of lemon slices using newsweeteners. International Journal of Food Science and Technology. 50(9):2046-2051. https://doi.org/10.1111/ijfs.12859 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/ijfs.12859 es_ES
dc.description.upvformatpinicio 2046 es_ES
dc.description.upvformatpfin 2051 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 289683 es_ES
dc.identifier.eissn 1365-2621
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Azoubel, P. M., & Elizabeth Xidieh Murr, F. (2004). Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61(3), 291-295. doi:10.1016/s0260-8774(03)00132-8 es_ES
dc.description.references Castelló, M. L., Fito, P. J., & Chiralt, A. (2006). Effect of osmotic dehydration and vacuum impregnation on respiration rate of cut strawberries. LWT - Food Science and Technology, 39(10), 1171-1179. doi:10.1016/j.lwt.2005.07.001 es_ES
dc.description.references Castelló, M. L., Igual, M., Fito, P. J., & Chiralt, A. (2009). Influence of osmotic dehydration on texture, respiration and microbial stability of apple slices (Var. Granny Smith). Journal of Food Engineering, 91(1), 1-9. doi:10.1016/j.jfoodeng.2008.07.025 es_ES
dc.description.references Castelló, M. L., Fito, P. J., & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 97(1), 64-71. doi:10.1016/j.jfoodeng.2009.09.016 es_ES
dc.description.references Castro-Giráldez, M., Tylewicz, U., Fito, P. J., Dalla Rosa, M., & Fito, P. (2011). Analysis of chemical and structural changes in kiwifruit (Actinidia deliciosa cv Hayward) through the osmotic dehydration. Journal of Food Engineering, 105(4), 599-608. doi:10.1016/j.jfoodeng.2011.03.029 es_ES
dc.description.references CHÁFER, M., GONZÁLEZ-MARTÍNEZ, C., ORTOLÁ, M. D., CHIRALT, A., & FITO, P. (2001). KINETICS OF OSMOTIC DEHYDRATION IN ORANGE AND MANDARIN PEELS. Journal of Food Process Engineering, 24(4), 273-289. doi:10.1111/j.1745-4530.2001.tb00544.x es_ES
dc.description.references Chatsudthipong, V., & Muanprasat, C. (2009). Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacology & Therapeutics, 121(1), 41-54. doi:10.1016/j.pharmthera.2008.09.007 es_ES
dc.description.references Derossi, A., De Pilli, T., Severini, C., & McCarthy, M. J. (2008). Mass transfer during osmotic dehydration of apples. Journal of Food Engineering, 86(4), 519-528. doi:10.1016/j.jfoodeng.2007.11.007 es_ES
dc.description.references Devalaraja, S., Jain, S., & Yadav, H. (2011). Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Research International, 44(7), 1856-1865. doi:10.1016/j.foodres.2011.04.008 es_ES
dc.description.references FAO/WHO 2003 Report of the sixty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives, Rome, 10-19 June 2003 es_ES
dc.description.references Goyal, S. K., Samsher, & Goyal, R. K. (2009). Stevia (Stevia rebaudiana) a bio-sweetener: a review. International Journal of Food Sciences and Nutrition, 61(1), 1-10. doi:10.3109/09637480903193049 es_ES
dc.description.references Kim, I.-S., Yang, M., Lee, O.-H., & Kang, S.-N. (2011). The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT - Food Science and Technology, 44(5), 1328-1332. doi:10.1016/j.lwt.2010.12.003 es_ES
dc.description.references Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132(3), 1121-1132. doi:10.1016/j.foodchem.2011.11.140 es_ES
dc.description.references Lina, B. A. R., Jonker, D., & Kozianowski, G. (2002). Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food and Chemical Toxicology, 40(10), 1375-1381. doi:10.1016/s0278-6915(02)00105-9 es_ES
dc.description.references Masmoudi, M., Besbes, S., Blecker, C., & Attia, H. (2007). Preparation and Characterization of Osmodehydrated Fruits from Lemon and Date By-products. Food Science and Technology International, 13(6), 405-412. doi:10.1177/1082013208089562 es_ES
dc.description.references Oh, D.-K. (2007). Tagatose: properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 76(1), 1-8. doi:10.1007/s00253-007-0981-1 es_ES
dc.description.references Park, K. J., Bin, A., Reis Brod, F. P., & Brandini Park, T. H. K. (2002). Osmotic dehydration kinetics of pear D’anjou (Pyrus communis L.). Journal of Food Engineering, 52(3), 293-298. doi:10.1016/s0260-8774(01)00118-2 es_ES
dc.description.references Patra, F., Tomar, S. K., & Arora, S. (2009). Technological and Functional Applications of Low-Calorie Sweeteners from Lactic Acid Bacteria. Journal of Food Science, 74(1), R16-R23. doi:10.1111/j.1750-3841.2008.01005.x es_ES
dc.description.references Peinado, I., Rosa, E., Heredia, A., Escriche, I., & Andrés, A. (2013). Influence of processing on the volatile profile of strawberry spreads made with isomaltulose. Food Chemistry, 138(1), 621-629. doi:10.1016/j.foodchem.2012.09.104 es_ES
dc.description.references Periche, A., Heredia, A., Escriche, I., Andrés, A., & Castelló, M. L. (2014). Optical, mechanical and sensory properties of based-isomaltulose gummy confections. Food Bioscience, 7, 37-44. doi:10.1016/j.fbio.2014.05.006 es_ES
dc.description.references Rao, V. A. (2001). The prebiotic properties of oligofructose at low intake levels. Nutrition Research, 21(6), 843-848. doi:10.1016/s0271-5317(01)00284-6 es_ES
dc.description.references Raschka, L., & Daniel, H. (2005). Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone, 37(5), 728-735. doi:10.1016/j.bone.2005.05.015 es_ES
dc.description.references Shankar, P., Ahuja, S., & Sriram, K. (2013). Non-nutritive sweeteners: Review and update. Nutrition, 29(11-12), 1293-1299. doi:10.1016/j.nut.2013.03.024 es_ES
dc.description.references Shi, X. Q., & Maupoey, P. F. (1994). Mass Transfer in Vacuum Osmotic Dehydration of Fruits: A Mathematical Model Approach. LWT - Food Science and Technology, 27(1), 67-72. doi:10.1006/fstl.1994.1014 es_ES
dc.description.references Silva, M. A. da C., Silva, Z. E. da, Mariani, V. C., & Darche, S. (2012). Mass transfer during the osmotic dehydration of West Indian cherry. LWT - Food Science and Technology, 45(2), 246-252. doi:10.1016/j.lwt.2011.07.032 es_ES
dc.description.references İspir, A., & Toğrul, İ. T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166-180. doi:10.1016/j.cherd.2008.07.011 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem