Mostrar el registro sencillo del ítem
dc.contributor.author | Rubio Arraez, Susana | es_ES |
dc.contributor.author | Capella Hernández, Juan Vicente | es_ES |
dc.contributor.author | Ortolá Ortolá, Mª Dolores | es_ES |
dc.contributor.author | Castelló Gómez, María Luisa | es_ES |
dc.date.accessioned | 2017-03-21T15:50:18Z | |
dc.date.available | 2017-03-21T15:50:18Z | |
dc.date.issued | 2015-09 | |
dc.identifier.issn | 0950-5423 | |
dc.identifier.uri | http://hdl.handle.net/10251/78892 | |
dc.description.abstract | Lemon slices were osmotically dehydrated using the following healthy sweeteners as osmotic agents: tagatose, isomaltulose, oligofructose and aqueous extract of stevia. A kinetic study using a Fickian approach was performed, which also analysed the changes in water activity, total mass, mass of water and mass of soluble solids in lemon slices. The results showed that the greatest value of effective diffusivity (De) in osmodehydrated lemon slices was obtained from a combination of oligofructose and stevia. However, the level of water activity (aw) reached with this syrup was the highest, meaning that the product might be less stable. Additionally, isomaltulose favoured the total mass, whereas tagatose did the opposite. Finally, the syrup recommended for dehydrating lemon slices would be a combination of tagatose, oligofructose and aqueous extract of stevia since its De was similar to the value obtained when only oligofructose and stevia were used, but aw values were lower. | es_ES |
dc.description.sponsorship | The authors would like to thank the Serigio-Andres family for donating the raw materials and also the GVA projects GV/2013/029, GV/2014/012 as well as the Universitat Politecnica de Valencia (Spain) for the financial support given to this research study (UPV PAID-06-12 SP20120889). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | International Journal of Food Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Isomaltulose | es_ES |
dc.subject | Kinetics | es_ES |
dc.subject | Lemon | es_ES |
dc.subject | Oligofructose | es_ES |
dc.subject | Osmotic dehydration | es_ES |
dc.subject | Stevia | es_ES |
dc.subject | Tagatose | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Modelling Osmotic dehydration of lemon slices using newsweeteners | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/ijfs.12859 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2013%2F029/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2014%2F012/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-12-SP20120889/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Rubio Arraez, S.; Capella Hernández, JV.; Ortolá Ortolá, MD.; Castelló Gómez, ML. (2015). Modelling Osmotic dehydration of lemon slices using newsweeteners. International Journal of Food Science and Technology. 50(9):2046-2051. https://doi.org/10.1111/ijfs.12859 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1111/ijfs.12859 | es_ES |
dc.description.upvformatpinicio | 2046 | es_ES |
dc.description.upvformatpfin | 2051 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 50 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 289683 | es_ES |
dc.identifier.eissn | 1365-2621 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Azoubel, P. M., & Elizabeth Xidieh Murr, F. (2004). Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61(3), 291-295. doi:10.1016/s0260-8774(03)00132-8 | es_ES |
dc.description.references | Castelló, M. L., Fito, P. J., & Chiralt, A. (2006). Effect of osmotic dehydration and vacuum impregnation on respiration rate of cut strawberries. LWT - Food Science and Technology, 39(10), 1171-1179. doi:10.1016/j.lwt.2005.07.001 | es_ES |
dc.description.references | Castelló, M. L., Igual, M., Fito, P. J., & Chiralt, A. (2009). Influence of osmotic dehydration on texture, respiration and microbial stability of apple slices (Var. Granny Smith). Journal of Food Engineering, 91(1), 1-9. doi:10.1016/j.jfoodeng.2008.07.025 | es_ES |
dc.description.references | Castelló, M. L., Fito, P. J., & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 97(1), 64-71. doi:10.1016/j.jfoodeng.2009.09.016 | es_ES |
dc.description.references | Castro-Giráldez, M., Tylewicz, U., Fito, P. J., Dalla Rosa, M., & Fito, P. (2011). Analysis of chemical and structural changes in kiwifruit (Actinidia deliciosa cv Hayward) through the osmotic dehydration. Journal of Food Engineering, 105(4), 599-608. doi:10.1016/j.jfoodeng.2011.03.029 | es_ES |
dc.description.references | CHÁFER, M., GONZÁLEZ-MARTÍNEZ, C., ORTOLÁ, M. D., CHIRALT, A., & FITO, P. (2001). KINETICS OF OSMOTIC DEHYDRATION IN ORANGE AND MANDARIN PEELS. Journal of Food Process Engineering, 24(4), 273-289. doi:10.1111/j.1745-4530.2001.tb00544.x | es_ES |
dc.description.references | Chatsudthipong, V., & Muanprasat, C. (2009). Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacology & Therapeutics, 121(1), 41-54. doi:10.1016/j.pharmthera.2008.09.007 | es_ES |
dc.description.references | Derossi, A., De Pilli, T., Severini, C., & McCarthy, M. J. (2008). Mass transfer during osmotic dehydration of apples. Journal of Food Engineering, 86(4), 519-528. doi:10.1016/j.jfoodeng.2007.11.007 | es_ES |
dc.description.references | Devalaraja, S., Jain, S., & Yadav, H. (2011). Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Research International, 44(7), 1856-1865. doi:10.1016/j.foodres.2011.04.008 | es_ES |
dc.description.references | FAO/WHO 2003 Report of the sixty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives, Rome, 10-19 June 2003 | es_ES |
dc.description.references | Goyal, S. K., Samsher, & Goyal, R. K. (2009). Stevia (Stevia rebaudiana) a bio-sweetener: a review. International Journal of Food Sciences and Nutrition, 61(1), 1-10. doi:10.3109/09637480903193049 | es_ES |
dc.description.references | Kim, I.-S., Yang, M., Lee, O.-H., & Kang, S.-N. (2011). The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT - Food Science and Technology, 44(5), 1328-1332. doi:10.1016/j.lwt.2010.12.003 | es_ES |
dc.description.references | Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chemistry, 132(3), 1121-1132. doi:10.1016/j.foodchem.2011.11.140 | es_ES |
dc.description.references | Lina, B. A. R., Jonker, D., & Kozianowski, G. (2002). Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food and Chemical Toxicology, 40(10), 1375-1381. doi:10.1016/s0278-6915(02)00105-9 | es_ES |
dc.description.references | Masmoudi, M., Besbes, S., Blecker, C., & Attia, H. (2007). Preparation and Characterization of Osmodehydrated Fruits from Lemon and Date By-products. Food Science and Technology International, 13(6), 405-412. doi:10.1177/1082013208089562 | es_ES |
dc.description.references | Oh, D.-K. (2007). Tagatose: properties, applications, and biotechnological processes. Applied Microbiology and Biotechnology, 76(1), 1-8. doi:10.1007/s00253-007-0981-1 | es_ES |
dc.description.references | Park, K. J., Bin, A., Reis Brod, F. P., & Brandini Park, T. H. K. (2002). Osmotic dehydration kinetics of pear D’anjou (Pyrus communis L.). Journal of Food Engineering, 52(3), 293-298. doi:10.1016/s0260-8774(01)00118-2 | es_ES |
dc.description.references | Patra, F., Tomar, S. K., & Arora, S. (2009). Technological and Functional Applications of Low-Calorie Sweeteners from Lactic Acid Bacteria. Journal of Food Science, 74(1), R16-R23. doi:10.1111/j.1750-3841.2008.01005.x | es_ES |
dc.description.references | Peinado, I., Rosa, E., Heredia, A., Escriche, I., & Andrés, A. (2013). Influence of processing on the volatile profile of strawberry spreads made with isomaltulose. Food Chemistry, 138(1), 621-629. doi:10.1016/j.foodchem.2012.09.104 | es_ES |
dc.description.references | Periche, A., Heredia, A., Escriche, I., Andrés, A., & Castelló, M. L. (2014). Optical, mechanical and sensory properties of based-isomaltulose gummy confections. Food Bioscience, 7, 37-44. doi:10.1016/j.fbio.2014.05.006 | es_ES |
dc.description.references | Rao, V. A. (2001). The prebiotic properties of oligofructose at low intake levels. Nutrition Research, 21(6), 843-848. doi:10.1016/s0271-5317(01)00284-6 | es_ES |
dc.description.references | Raschka, L., & Daniel, H. (2005). Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone, 37(5), 728-735. doi:10.1016/j.bone.2005.05.015 | es_ES |
dc.description.references | Shankar, P., Ahuja, S., & Sriram, K. (2013). Non-nutritive sweeteners: Review and update. Nutrition, 29(11-12), 1293-1299. doi:10.1016/j.nut.2013.03.024 | es_ES |
dc.description.references | Shi, X. Q., & Maupoey, P. F. (1994). Mass Transfer in Vacuum Osmotic Dehydration of Fruits: A Mathematical Model Approach. LWT - Food Science and Technology, 27(1), 67-72. doi:10.1006/fstl.1994.1014 | es_ES |
dc.description.references | Silva, M. A. da C., Silva, Z. E. da, Mariani, V. C., & Darche, S. (2012). Mass transfer during the osmotic dehydration of West Indian cherry. LWT - Food Science and Technology, 45(2), 246-252. doi:10.1016/j.lwt.2011.07.032 | es_ES |
dc.description.references | İspir, A., & Toğrul, İ. T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166-180. doi:10.1016/j.cherd.2008.07.011 | es_ES |