Mostrar el registro sencillo del ítem
dc.contributor.author | Ortuño Molinero, Rubén | es_ES |
dc.contributor.author | Cortijo-Munuera, Mario | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.date.accessioned | 2017-03-30T07:41:49Z | |
dc.date.available | 2017-03-30T07:41:49Z | |
dc.date.issued | 2017-02 | |
dc.identifier.issn | 2040-8978 | |
dc.identifier.uri | http://hdl.handle.net/10251/79247 | |
dc.description.abstract | The fundamental electric dipolar resonance of metallic nanostrips placed on top of a dielectric waveguide can be excited via evanescent wave coupling, thus giving rise to broad dips in the transmission spectrum of the waveguide. Here we show via numerical simulations that narrower and steeper Fano-like resonances can be obtained by asymmetrically coupling in the near field a larger nanostrip supporting an electric quadrupole in the frequency regime of interest to the original, shorter nanostrip. Under certain conditions, the spectral response corresponding to the electromagnetically induced transparency phenomenon is observed. We suggest that this hybrid plasmonic photonic approach could be especially relevant for sensing or all-optical switching applications in a photonic integrated platform such as silicon photonics. | es_ES |
dc.description.sponsorship | RO acknowledges support from Generalitat Valenciana through the VALi+d postdoctoral program (exp APOSTD/2014/004). AM acknowledges funding from contracts TEC2014-51902-C2-1-R and TEC2014-61906-EXP (MINECO/FEDER, UE) and NANOMET PLUS-PROMETEOII/2014/034 (Conselleria d'Educacio, Cultura i Esport). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Optics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Silicon waveguides | es_ES |
dc.subject | Fano resonances | es_ES |
dc.subject | Nanoantennas | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/2040-8986/aa51e0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F004/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-51902-C2-1-R/ES/COMPONENTES INSPIRADOS EN METAMATERIALES PARA SENSADO AVANZADO DESDE LOS TERAHERCIOS HASTA EL OPTICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-61906-EXP/ES/CONMUTACION PLASMONICA TODO-OPTICA ULTRARRAPIDA EN UN CHIP FOTONICO DE SILICIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Ortuño Molinero, R.; Cortijo-Munuera, M.; Martínez Abietar, AJ. (2017). Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators. Journal of Optics. 19(2):025003-1-025003-7. https://doi.org/10.1088/2040-8986/aa51e0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/2040-8986/aa51e0 | es_ES |
dc.description.upvformatpinicio | 025003-1 | es_ES |
dc.description.upvformatpfin | 025003-7 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 325065 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630 | es_ES |
dc.description.references | Zijlstra, P., Paulo, P. M. R., & Orrit, M. (2012). Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotechnology, 7(6), 379-382. doi:10.1038/nnano.2012.51 | es_ES |
dc.description.references | Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 737-748. doi:10.1038/nphoton.2012.244 | es_ES |
dc.description.references | Husnik, M., Niegemann, J., Busch, K., & Wegener, M. (2013). Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas. Optics Letters, 38(22), 4597. doi:10.1364/ol.38.004597 | es_ES |
dc.description.references | Fan, P., Yu, Z., Fan, S., & Brongersma, M. L. (2014). Optical Fano resonance of an individual semiconductor nanostructure. Nature Materials, 13(5), 471-475. doi:10.1038/nmat3927 | es_ES |
dc.description.references | Rodríguez-Fortuño, F. J., Martínez-Marco, M., Tomás-Navarro, B., Ortuño, R., Martí, J., Martínez, A., & Rodríguez-Cantó, P. J. (2011). Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters, 98(13), 133118. doi:10.1063/1.3558916 | es_ES |
dc.description.references | Lorente-Crespo, M., Wang, L., Ortuño, R., García-Meca, C., Ekinci, Y., & Martínez, A. (2013). Magnetic Hot Spots in Closely Spaced Thick Gold Nanorings. Nano Letters, 13(6), 2654-2661. doi:10.1021/nl400798s | es_ES |
dc.description.references | Rodríguez-Fortuño, F. J., Espinosa-Soria, A., & Martínez, A. (2016). Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. Journal of Optics, 18(12), 123001. doi:10.1088/2040-8978/18/12/123001 | es_ES |
dc.description.references | Lipson, M. (2005). Guiding, modulating, and emitting light on Silicon-challenges and opportunities. Journal of Lightwave Technology, 23(12), 4222-4238. doi:10.1109/jlt.2005.858225 | es_ES |
dc.description.references | Thomson, D., Zilkie, A., Bowers, J. E., Komljenovic, T., Reed, G. T., Vivien, L., … Nedeljkovic, M. (2016). Roadmap on silicon photonics. Journal of Optics, 18(7), 073003. doi:10.1088/2040-8978/18/7/073003 | es_ES |
dc.description.references | Alepuz-Benache, I., García-Meca, C., Rodríguez-Fortuño, F. J., Ortuño, R., Lorente-Crespo, M., Griol, A., & Martínez, A. (2012). Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide. Nanophotonics IV. doi:10.1117/12.922300 | es_ES |
dc.description.references | Bernal Arango, F., Kwadrin, A., & Koenderink, A. F. (2012). Plasmonic Antennas Hybridized with Dielectric Waveguides. ACS Nano, 6(11), 10156-10167. doi:10.1021/nn303907r | es_ES |
dc.description.references | Février, M., Gogol, P., Aassime, A., Mégy, R., Delacour, C., Chelnokov, A., … Dagens, B. (2012). Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide. Nano Letters, 12(2), 1032-1037. doi:10.1021/nl204265f | es_ES |
dc.description.references | Chamanzar, M., Xia, Z., Yegnanarayanan, S., & Adibi, A. (2013). Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Optics Express, 21(26), 32086. doi:10.1364/oe.21.032086 | es_ES |
dc.description.references | Peyskens, F., Subramanian, A. Z., Neutens, P., Dhakal, A., Van Dorpe, P., Le Thomas, N., & Baets, R. (2015). Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. Optics Express, 23(3), 3088. doi:10.1364/oe.23.003088 | es_ES |
dc.description.references | Peyskens, F., Dhakal, A., Van Dorpe, P., Le Thomas, N., & Baets, R. (2015). Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform. ACS Photonics, 3(1), 102-108. doi:10.1021/acsphotonics.5b00487 | es_ES |
dc.description.references | Castro-Lopez, M., de Sousa, N., Garcia-Martin, A., Gardes, F. Y., & Sapienza, R. (2015). Scattering of a plasmonic nanoantenna embedded in a silicon waveguide. Optics Express, 23(22), 28108. doi:10.1364/oe.23.028108 | es_ES |
dc.description.references | Espinosa-Soria, A., Griol, A., & Martínez, A. (2016). Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 24(9), 9592. doi:10.1364/oe.24.009592 | es_ES |
dc.description.references | Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V. V., Dorpe, P. V., … Maier, S. A. (2009). Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano Letters, 9(4), 1663-1667. doi:10.1021/nl9001876 | es_ES |
dc.description.references | Luk’yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., & Chong, C. T. (2010). The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 9(9), 707-715. doi:10.1038/nmat2810 | es_ES |
dc.description.references | Shafiei, F., Monticone, F., Le, K. Q., Liu, X.-X., Hartsfield, T., Alù, A., & Li, X. (2013). A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nature Nanotechnology, 8(2), 95-99. doi:10.1038/nnano.2012.249 | es_ES |
dc.description.references | Yang, Z.-J., Zhang, Z.-S., Zhang, L.-H., Li, Q.-Q., Hao, Z.-H., & Wang, Q.-Q. (2011). Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Optics Letters, 36(9), 1542. doi:10.1364/ol.36.001542 | es_ES |
dc.description.references | Liu, N., Langguth, L., Weiss, T., Kästel, J., Fleischhauer, M., Pfau, T., & Giessen, H. (2009). Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 8(9), 758-762. doi:10.1038/nmat2495 | es_ES |
dc.description.references | Harris, S. E. (1997). Electromagnetically Induced Transparency. Physics Today, 50(7), 36-42. doi:10.1063/1.881806 | es_ES |
dc.description.references | Wu, C., Khanikaev, A. B., Adato, R., Arju, N., Yanik, A. A., Altug, H., & Shvets, G. (2011). Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 11(1), 69-75. doi:10.1038/nmat3161 | es_ES |
dc.description.references | Chang, W.-S., Lassiter, J. B., Swanglap, P., Sobhani, H., Khatua, S., Nordlander, P., … Link, S. (2012). A Plasmonic Fano Switch. Nano Letters, 12(9), 4977-4982. doi:10.1021/nl302610v | es_ES |
dc.description.references | Espinosa-Soria, A., & Martinez, A. (2016). Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters, 28(14), 1561-1564. doi:10.1109/lpt.2016.2553841 | es_ES |
dc.description.references | Amin, M., Farhat, M., & Baǧcı, H. (2013). A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Scientific Reports, 3(1). doi:10.1038/srep02105 | es_ES |
dc.description.references | Knight, M. W., Wu, Y., Lassiter, J. B., Nordlander, P., & Halas, N. J. (2009). Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle. Nano Letters, 9(5), 2188-2192. doi:10.1021/nl900945q | es_ES |
dc.description.references | Valamanesh, M., Borensztein, Y., Langlois, C., & Lacaze, E. (2011). Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles. The Journal of Physical Chemistry C, 115(7), 2914-2922. doi:10.1021/jp1056495 | es_ES |
dc.description.references | Berkovitch, N., Ginzburg, P., & Orenstein, M. (2012). Nano-plasmonic antennas in the near infrared regime. Journal of Physics: Condensed Matter, 24(7), 073202. doi:10.1088/0953-8984/24/7/073202 | es_ES |
dc.description.references | Lu, H., Liu, X., Mao, D., & Wang, G. (2012). Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 37(18), 3780. doi:10.1364/ol.37.003780 | es_ES |
dc.description.references | Chen, J., Sun, C., & Gong, Q. (2013). Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide. Optics Letters, 39(1), 52. doi:10.1364/ol.39.000052 | es_ES |
dc.description.references | Binfeng, Y., Hu, G., Zhang, R., & Yiping, C. (2016). Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. Journal of Optics, 18(5), 055002. doi:10.1088/2040-8978/18/5/055002 | es_ES |