- -

Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortuño Molinero, Rubén es_ES
dc.contributor.author Cortijo-Munuera, Mario es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2017-03-30T07:41:49Z
dc.date.available 2017-03-30T07:41:49Z
dc.date.issued 2017-02
dc.identifier.issn 2040-8978
dc.identifier.uri http://hdl.handle.net/10251/79247
dc.description.abstract The fundamental electric dipolar resonance of metallic nanostrips placed on top of a dielectric waveguide can be excited via evanescent wave coupling, thus giving rise to broad dips in the transmission spectrum of the waveguide. Here we show via numerical simulations that narrower and steeper Fano-like resonances can be obtained by asymmetrically coupling in the near field a larger nanostrip supporting an electric quadrupole in the frequency regime of interest to the original, shorter nanostrip. Under certain conditions, the spectral response corresponding to the electromagnetically induced transparency phenomenon is observed. We suggest that this hybrid plasmonic photonic approach could be especially relevant for sensing or all-optical switching applications in a photonic integrated platform such as silicon photonics. es_ES
dc.description.sponsorship RO acknowledges support from Generalitat Valenciana through the VALi+d postdoctoral program (exp APOSTD/2014/004). AM acknowledges funding from contracts TEC2014-51902-C2-1-R and TEC2014-61906-EXP (MINECO/FEDER, UE) and NANOMET PLUS-PROMETEOII/2014/034 (Conselleria d'Educacio, Cultura i Esport). en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Optics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Silicon waveguides es_ES
dc.subject Fano resonances es_ES
dc.subject Nanoantennas es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/2040-8986/aa51e0
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-51902-C2-1-R/ES/COMPONENTES INSPIRADOS EN METAMATERIALES PARA SENSADO AVANZADO DESDE LOS TERAHERCIOS HASTA EL OPTICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-61906-EXP/ES/CONMUTACION PLASMONICA TODO-OPTICA ULTRARRAPIDA EN UN CHIP FOTONICO DE SILICIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Ortuño Molinero, R.; Cortijo-Munuera, M.; Martínez Abietar, AJ. (2017). Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators. Journal of Optics. 19(2):025003-1-025003-7. https://doi.org/10.1088/2040-8986/aa51e0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/2040-8986/aa51e0 es_ES
dc.description.upvformatpinicio 025003-1 es_ES
dc.description.upvformatpfin 025003-7
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 325065 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630 es_ES
dc.description.references Zijlstra, P., Paulo, P. M. R., & Orrit, M. (2012). Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotechnology, 7(6), 379-382. doi:10.1038/nnano.2012.51 es_ES
dc.description.references Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 737-748. doi:10.1038/nphoton.2012.244 es_ES
dc.description.references Husnik, M., Niegemann, J., Busch, K., & Wegener, M. (2013). Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas. Optics Letters, 38(22), 4597. doi:10.1364/ol.38.004597 es_ES
dc.description.references Fan, P., Yu, Z., Fan, S., & Brongersma, M. L. (2014). Optical Fano resonance of an individual semiconductor nanostructure. Nature Materials, 13(5), 471-475. doi:10.1038/nmat3927 es_ES
dc.description.references Rodríguez-Fortuño, F. J., Martínez-Marco, M., Tomás-Navarro, B., Ortuño, R., Martí, J., Martínez, A., & Rodríguez-Cantó, P. J. (2011). Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters, 98(13), 133118. doi:10.1063/1.3558916 es_ES
dc.description.references Lorente-Crespo, M., Wang, L., Ortuño, R., García-Meca, C., Ekinci, Y., & Martínez, A. (2013). Magnetic Hot Spots in Closely Spaced Thick Gold Nanorings. Nano Letters, 13(6), 2654-2661. doi:10.1021/nl400798s es_ES
dc.description.references Rodríguez-Fortuño, F. J., Espinosa-Soria, A., & Martínez, A. (2016). Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. Journal of Optics, 18(12), 123001. doi:10.1088/2040-8978/18/12/123001 es_ES
dc.description.references Lipson, M. (2005). Guiding, modulating, and emitting light on Silicon-challenges and opportunities. Journal of Lightwave Technology, 23(12), 4222-4238. doi:10.1109/jlt.2005.858225 es_ES
dc.description.references Thomson, D., Zilkie, A., Bowers, J. E., Komljenovic, T., Reed, G. T., Vivien, L., … Nedeljkovic, M. (2016). Roadmap on silicon photonics. Journal of Optics, 18(7), 073003. doi:10.1088/2040-8978/18/7/073003 es_ES
dc.description.references Alepuz-Benache, I., García-Meca, C., Rodríguez-Fortuño, F. J., Ortuño, R., Lorente-Crespo, M., Griol, A., & Martínez, A. (2012). Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide. Nanophotonics IV. doi:10.1117/12.922300 es_ES
dc.description.references Bernal Arango, F., Kwadrin, A., & Koenderink, A. F. (2012). Plasmonic Antennas Hybridized with Dielectric Waveguides. ACS Nano, 6(11), 10156-10167. doi:10.1021/nn303907r es_ES
dc.description.references Février, M., Gogol, P., Aassime, A., Mégy, R., Delacour, C., Chelnokov, A., … Dagens, B. (2012). Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide. Nano Letters, 12(2), 1032-1037. doi:10.1021/nl204265f es_ES
dc.description.references Chamanzar, M., Xia, Z., Yegnanarayanan, S., & Adibi, A. (2013). Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Optics Express, 21(26), 32086. doi:10.1364/oe.21.032086 es_ES
dc.description.references Peyskens, F., Subramanian, A. Z., Neutens, P., Dhakal, A., Van Dorpe, P., Le Thomas, N., & Baets, R. (2015). Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. Optics Express, 23(3), 3088. doi:10.1364/oe.23.003088 es_ES
dc.description.references Peyskens, F., Dhakal, A., Van Dorpe, P., Le Thomas, N., & Baets, R. (2015). Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform. ACS Photonics, 3(1), 102-108. doi:10.1021/acsphotonics.5b00487 es_ES
dc.description.references Castro-Lopez, M., de Sousa, N., Garcia-Martin, A., Gardes, F. Y., & Sapienza, R. (2015). Scattering of a plasmonic nanoantenna embedded in a silicon waveguide. Optics Express, 23(22), 28108. doi:10.1364/oe.23.028108 es_ES
dc.description.references Espinosa-Soria, A., Griol, A., & Martínez, A. (2016). Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 24(9), 9592. doi:10.1364/oe.24.009592 es_ES
dc.description.references Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V. V., Dorpe, P. V., … Maier, S. A. (2009). Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano Letters, 9(4), 1663-1667. doi:10.1021/nl9001876 es_ES
dc.description.references Luk’yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., & Chong, C. T. (2010). The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 9(9), 707-715. doi:10.1038/nmat2810 es_ES
dc.description.references Shafiei, F., Monticone, F., Le, K. Q., Liu, X.-X., Hartsfield, T., Alù, A., & Li, X. (2013). A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nature Nanotechnology, 8(2), 95-99. doi:10.1038/nnano.2012.249 es_ES
dc.description.references Yang, Z.-J., Zhang, Z.-S., Zhang, L.-H., Li, Q.-Q., Hao, Z.-H., & Wang, Q.-Q. (2011). Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Optics Letters, 36(9), 1542. doi:10.1364/ol.36.001542 es_ES
dc.description.references Liu, N., Langguth, L., Weiss, T., Kästel, J., Fleischhauer, M., Pfau, T., & Giessen, H. (2009). Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 8(9), 758-762. doi:10.1038/nmat2495 es_ES
dc.description.references Harris, S. E. (1997). Electromagnetically Induced Transparency. Physics Today, 50(7), 36-42. doi:10.1063/1.881806 es_ES
dc.description.references Wu, C., Khanikaev, A. B., Adato, R., Arju, N., Yanik, A. A., Altug, H., & Shvets, G. (2011). Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 11(1), 69-75. doi:10.1038/nmat3161 es_ES
dc.description.references Chang, W.-S., Lassiter, J. B., Swanglap, P., Sobhani, H., Khatua, S., Nordlander, P., … Link, S. (2012). A Plasmonic Fano Switch. Nano Letters, 12(9), 4977-4982. doi:10.1021/nl302610v es_ES
dc.description.references Espinosa-Soria, A., & Martinez, A. (2016). Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters, 28(14), 1561-1564. doi:10.1109/lpt.2016.2553841 es_ES
dc.description.references Amin, M., Farhat, M., & Baǧcı, H. (2013). A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Scientific Reports, 3(1). doi:10.1038/srep02105 es_ES
dc.description.references Knight, M. W., Wu, Y., Lassiter, J. B., Nordlander, P., & Halas, N. J. (2009). Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle. Nano Letters, 9(5), 2188-2192. doi:10.1021/nl900945q es_ES
dc.description.references Valamanesh, M., Borensztein, Y., Langlois, C., & Lacaze, E. (2011). Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles. The Journal of Physical Chemistry C, 115(7), 2914-2922. doi:10.1021/jp1056495 es_ES
dc.description.references Berkovitch, N., Ginzburg, P., & Orenstein, M. (2012). Nano-plasmonic antennas in the near infrared regime. Journal of Physics: Condensed Matter, 24(7), 073202. doi:10.1088/0953-8984/24/7/073202 es_ES
dc.description.references Lu, H., Liu, X., Mao, D., & Wang, G. (2012). Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 37(18), 3780. doi:10.1364/ol.37.003780 es_ES
dc.description.references Chen, J., Sun, C., & Gong, Q. (2013). Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide. Optics Letters, 39(1), 52. doi:10.1364/ol.39.000052 es_ES
dc.description.references Binfeng, Y., Hu, G., Zhang, R., & Yiping, C. (2016). Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. Journal of Optics, 18(5), 055002. doi:10.1088/2040-8978/18/5/055002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem