- -

Parallel heuristic search in forward partial-order planning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parallel heuristic search in forward partial-order planning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sapena Vercher, Oscar es_ES
dc.contributor.author Torreño Lerma, Alejandro es_ES
dc.contributor.author Onaindia de la Rivaherrera, Eva es_ES
dc.date.accessioned 2017-03-31T07:37:23Z
dc.date.available 2017-03-31T07:37:23Z
dc.date.issued 2016-11
dc.identifier.issn 0269-8889
dc.identifier.uri http://hdl.handle.net/10251/79306
dc.description.abstract [EN] Most of the current top-performing planners are sequential planners that only handle total-order plans. Although this is a computationally efficient approach, the management of total-order plans restrict the choices of reasoning and thus the generation of flexible plans. In this paper, we present FLAP2, a forward-chaining planner that follows the principles of the classical POCL (Partial-Order Causal-Link Planning) paradigm. Working with partial-order plans allows FLAP2 to easily manage the parallelism of the plans, which brings several advantages: more flexible executions, shorter plan durations (makespan) and an easy adaptation to support new features like temporal or multi-agent planning. However, one of the limitations of POCL planners is that they require far more computational effort to deal with the interactions that arise among actions. FLAP2 minimizes this overhead by applying several techniques that improve its performance: the combination of different state-based heuristics and the use of parallel processes to diversify the search in different directions when a plateau is found. To evaluate the performance of FLAP2, we have made a comparison with four state-of-the-art planners: SGPlan, YAHSP2, Temporal Fast Downward and OPTIC. Experimental results show that FLAP2 presents a very acceptable trade-off between time and quality and a high coverage on the current planning benchmarks. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish MINECO project TIN2014-55637-C2-2-R and cofounded by FEDER.
dc.language Inglés es_ES
dc.publisher Cambridge University Press (CUP) es_ES
dc.relation.ispartof Knowledge Engineering Review es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Automated planning es_ES
dc.subject Heuristics es_ES
dc.subject POP (Partial-Order Planning) es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Parallel heuristic search in forward partial-order planning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S0269888916000230
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-55637-C2-2-R/ES/GESTION DE METAS PARA AUTONOMIA A LARGO PLAZO EN CIUDADES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Sapena Vercher, O.; Torreño Lerma, A.; Onaindia De La Rivaherrera, E. (2016). Parallel heuristic search in forward partial-order planning. Knowledge Engineering Review. 31(5):417-428. https://doi.org/10.1017/S0269888916000230 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1017/S0269888916000230 es_ES
dc.description.upvformatpinicio 417 es_ES
dc.description.upvformatpfin 428 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 328333 es_ES
dc.identifier.eissn 1469-8005
dc.contributor.funder Ministerio de Economía y Competitividad


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem