Mostrar el registro sencillo del ítem
dc.contributor.author | Díaz, S. | es_ES |
dc.contributor.author | Mínguez, R. | es_ES |
dc.contributor.author | González, J. | es_ES |
dc.date.accessioned | 2017-04-05T11:00:29Z | |
dc.date.available | 2017-04-05T11:00:29Z | |
dc.date.issued | 2016-07-26 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/79482 | |
dc.description.abstract | [EN] This work presents an alternative technique to the existing methods for observability analysis (OA) in water networks, which is a prior essential step for the implementation of state estimation (SE) techniques within such systems. The methodology presented here starts from a known hydraulic state and assumes random gaussian distributions for the uncertainty of some hydraulic variables, which is then propagated to the rest of the system. This process is repeated again to analyze the change in the network uncertainty when metering devices considered as error-free are included, based on which the network observability can be evaluated. The method’s potential is presented in an illustrative example, which shows the additional information that this methodology provides with respect to traditional OA approaches. This proposal allows a better understanding of the network and constitutes a practical tool to prioritize the location of additional meters, thus enhancing the transformation of large urban areas into actual smart cities | es_ES |
dc.description.abstract | [ES] Este artículo presenta una técnica alternativa a los métodos existentes en la literatura para el análisis de observabilidad (AO) de redes de agua, paso previo imprescindible para la adaptación de las técnicas de estimación de estado (EE) a estos sistemas. La metodología propuesta parte de un estado de flujo conocido y asume distribuciones aleatorias normales para la incertidumbre de algunas variables hidráulicas, que se propaga luego al resto del sistema. Este proceso se repite a continuación para valorar el cambio en la incertidumbre de la red al añadir aparatos de medida cuyo error se considera nulo, en base al cual se puede evaluar la observabilidad de la red. El potencial del método se presenta mediante un ejemplo ilustrativo, que pone de manifiesto la información adicional que esta metodología aporta con respecto a los enfoques de AO tradicionales. Esta propuesta permite un mejor conocimiento de la red y es una herramienta útil para priorizar la colocación de nuevos equipos de medida, contribuyendo a la transformación de los grandes núcleos urbanos en smart cities. Guardar / Salir Siguiente > | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Ingeniería del Agua | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Estimación de estado | es_ES |
dc.subject | Análisis de incertidumbre | es_ES |
dc.subject | Equipos de medida | es_ES |
dc.subject | Monitorización en tiempo real | es_ES |
dc.subject | State estimation | es_ES |
dc.subject | Uncertainty analysis | es_ES |
dc.subject | Metering devices | es_ES |
dc.subject | Real time monitoring | es_ES |
dc.title | Aproximación estocástica al análisis de observabilidad en redes de abastecimiento de agua | es_ES |
dc.title.alternative | Stochastic approach to observability analysis in water networks | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-04-05T10:51:56Z | |
dc.identifier.doi | 10.4995/ia.2016.4625 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Díaz, S.; Mínguez, R.; González, J. (2016). Aproximación estocástica al análisis de observabilidad en redes de abastecimiento de agua. Ingeniería del Agua. 20(3):139-152. https://doi.org/10.4995/ia.2016.4625 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2016.4625 | es_ES |
dc.description.upvformatpinicio | 139 | es_ES |
dc.description.upvformatpfin | 152 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | |
dc.description.issue | 3 | |
dc.identifier.eissn | 1886-4996 | |
dc.description.references | Bargiela, A. B. 1984. On-line monitoring of water distribution networks. Ph.D. thesis, University of Durham, United Kingdom. | es_ES |
dc.description.references | Bargiela, A., Hainsworth, G. 1989. Pressure and flow uncertainty in water systems. Journal of Water Resources Planning and Management, 115(2), 212-229. doi:10.1061/(ASCE)0733-9496(1989)115:2(212) | es_ES |
dc.description.references | Caro, E., Arévalo, I., García-Martos, C., Conejo, A.J. 2013. Power system observability via optimization. Electric Power Systems Research, 104, 207-215. doi:10.1016/j.epsr.2013.06.019 | es_ES |
dc.description.references | Carpentier, P., Cohen, G. 1991. State estimation and leak detection in water distribution networks. Civil Engineering Systems, 8(4), 247-257. doi:10.1080/02630259108970634 | es_ES |
dc.description.references | Castillo, E., Conejo, A.J., Pruneda, R.E., Solares, C. 2005. State estimation observability based on the null space of the measurement Jacobian matrix. IEEE Transactions on Power Systems, 20(3), 1656-1658. doi:10.1109/TPWRS.2005.852093 | es_ES |
dc.description.references | Contaxis, G.C., Korres, G.N. (1988). A reduced model for power system observability analysis and restoration. IEEE Transactions on Power Systems, 3(4), 1411-1417. doi:10.1109/59.192947 | es_ES |
dc.description.references | Coulbeck, B. 1977. Optimisation and modelling technics in dynamic control of water distribution systems. Ph.D. thesis, University of Sheffield, United Kingdom. | es_ES |
dc.description.references | Díaz, S., González, J., Mínguez, R. 2015. Observability analysis in water transport networks: Algebraic approach. Journal of Water Resources Planning and Management, doi:10.1061/(ASCE)WR.1943-5452.0000621 | es_ES |
dc.description.references | Habiballah, I.O., Irving, M.R. 2001. Observability analysis for state estimation using linear programming. IEE Proceedings of Generation, Transmission and Distribution, 148(2), 142-145. doi:10.1049/ip-gtd:20010061 | es_ES |
dc.description.references | Kang, D., Lansey, K. 2010. Optimal meter placement for water distribution system state estimation. Journal of Water Resources Planning and Management, 136(3), 337-347. doi:10.1061/(ASCE)WR.1943-5452.0000037 | es_ES |
dc.description.references | Kapelan, Z., Savic, D., Walters, G. 2003. Multiobjective sampling design for water distribution model calibration. Journal of Water Resources Planning and Management, 129(6), 466-479. doi:10.1061/(ASCE)0733-9496(2003)129:6(466) | es_ES |
dc.description.references | Korres, G.N., Katsikas, P.J. 2003. A hybrid method for observability analysis using a reduced network graph theory. IEEE Transactions on Power Systems, 18(1), 295-304. doi:10.1109/TPWRS.2002.807072 | es_ES |
dc.description.references | Krumpholz, G.R., Clements, K.A., Davis, P.D. 1980. Power system observability - A practical algorithm using network topology. IEEE Transactions on Power Apparatus and Systems, PAS-99(4), 1534-1542. doi:10.1109/TPAS.1980.319578 | es_ES |
dc.description.references | Nagar, A.K., Powell, R.S. 2004. Observability analysis of water distribution systems under parametric and measurement uncertainty. Proceedings of the ASCE 2000 Joint Conference on Water Resources Engineering and Water Resources Planning and Management, Minneapolis, USA, 1-10. doi:10.1061/40517(2000)213 | es_ES |
dc.description.references | Nucera, R.R., Gilles, M.L. 1991. Observability analysis: A new topological algorithm. IEEE Transactions on Power Systems, 6(2), 466-475. doi:10.1109/59.76688 | es_ES |
dc.description.references | Preis, A., Whittle, A. J., Ostfeld, A., Perelman, L. (2011). Efficient hydraulic state estimation technique using reduced models of urban water networks. Journal of Water Resources Planning and Management, 137(4), 343-351. doi:10.1061/(ASCE)WR.1943-5452.0000113 | es_ES |
dc.description.references | Savic, D., Kapelan, Z., Jonkergouw, P. 2009. Quo vadis water distribution model calibration? Urban Water Journal, 6(1), 3-22. doi:10.1080/15730620802613380 | es_ES |
dc.description.references | Schweppe, F.C., Wildes, J. 1970. Power system static state estimation, Part I: Exact model. IEEE Transactions on Power Apparatus and Systems, PAS-89(1), 120-125. doi:10.1109/TPAS.1970.292678 | es_ES |
dc.description.references | Solares, C., Conejo, A.J., Castillo, E., Pruneda, R.E. 2009. Binary-arithmetic approach to observability checking in state estimation. IET Generation, Transmission and Distribution, 3(4), 336-345. doi:10.1049/iet-gtd.2008.0248 | es_ES |
dc.description.references | Walski, T.M. 1983. Techniques for calibrating network models. Journal of Water Resources Planning and Management, 109(4), 360-372. doi:10.1061/(ASCE)0733-9496(1983)109:4(360) | es_ES |
dc.description.references | Yu, G., Powell, R.S. 1994. Optimal design meter placement in water distribution systems. International Journal of Systems Science, 25(12), 2155-2166. doi:10.1080/00207729408949342 | es_ES |