- -

Cambio climático y planificación hidrológica: ¿es adecuado asumir un porcentaje único de reducción de aportaciones para toda la demarcación?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cambio climático y planificación hidrológica: ¿es adecuado asumir un porcentaje único de reducción de aportaciones para toda la demarcación?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marcos García, Patricia es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2017-04-05T12:24:03Z
dc.date.available 2017-04-05T12:24:03Z
dc.date.issued 2017-01-31
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/79496
dc.description.abstract [EN] The inclusion of climate change in water planning is not an easy task, due to its high uncertainty. In Spain, climate change effect on water resources is quantified through the application of an only reduction coefficient to the historical time series of inflows in every river basin district. This paper is intended to provide further insight into this topic, using the new climate change scenarios and three conceptual rainfall-runoff models to simulate future inflows for the Jucar river basin. Our results suggest that the headwaters basins are prone to suffer higher rainfall reductions and temperature increases than the Mediterranean basins. Moreover, great uncertainty about resources’ reduction exists, which could be significantly greater than current water plan projections. In our opinion, system’s resilience should be confronted with a plausible rank of climatic stress conditions, to identify vulnerabilities and propose adaptation measures. es_ES
dc.description.abstract [ES] La incorporación del cambio climático a la planificación hidrológica no es tarea sencilla, dada la alta incertidumbre asociada. En España, actualmente se consideran los escenarios futuros aplicando un coeficiente de reducción único a las series históricas de aportaciones. El presente artículo analiza la cuestión para el Sistema de Explotación Júcar, a la luz de los últimos escenarios de cambio climático (AR5) y comparando los resultados de tres modelos hidrológicos conceptuales. De los resultados se deduce que la disminución de precipitación y el aumento de temperatura podrían ser mayores en cabecera que en las subcuencas mediterráneas. Asimismo, la dispersión respecto al posible porcentaje de reducción del recurso es elevada, pudiendo resultar muy superior a las previsiones del Plan Hidrológico. Por tanto, sería necesario analizar la robustez y resiliencia del sistema frente a un rango plausible de situaciones de estrés, para identificar dónde es más vulnerable y proponer medidas de adaptación. es_ES
dc.description.sponsorship El presente trabajo ha sido financiado por el proyecto IMPADAPT (CGL2013-48424-C2-1-R) con fondos FEDER europeos y del Ministerio de Economía y Competitividad. Los autores agradecen a AEMET y a la Universidad de Cantabria los datos proporcionados (Spain02 v4 EURO-CORDEX dataset, http://www.meteo.unican.es/datasets/spain02).
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Ingeniería del Agua
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Planificación hidrológica es_ES
dc.subject Cambio climático es_ES
dc.subject Incertidumbre es_ES
dc.subject Análisis de tendencias es_ES
dc.subject Water planning es_ES
dc.subject Climate change es_ES
dc.subject Uncertainty es_ES
dc.subject Trend detection es_ES
dc.title Cambio climático y planificación hidrológica: ¿es adecuado asumir un porcentaje único de reducción de aportaciones para toda la demarcación? es_ES
dc.title.alternative Climate change and water planning: is a single reduction coefficient appropriate for the whole river basin district? es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-05T12:15:58Z
dc.identifier.doi 10.4995/ia.2017.6361
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Área de Posgrado - Àrea de Postgrau es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Marcos García, P.; Pulido-Velazquez, M. (2017). Cambio climático y planificación hidrológica: ¿es adecuado asumir un porcentaje único de reducción de aportaciones para toda la demarcación?. Ingeniería del Agua. 21(1):35-52. https://doi.org/10.4995/ia.2017.6361 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2017.6361 es_ES
dc.description.upvformatpinicio 35 es_ES
dc.description.upvformatpfin 52 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21
dc.description.issue 1
dc.identifier.eissn 1886-4996
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Anghileri, D., Pianosi, F., Soncini-Sessa, R. 2014. Trend detection in seasonal data: from hydrology to water resources. Journal of Hydrology, 511, 171-179. doi:10.1016/j.jhydrol.2014.01.022 es_ES
dc.description.references Apperl, B., Pulido-Velázquez, M., Andreu, J., Karjalainen, T. P. 2015. Contribution of the multi-attribute value theory to conflict resolution in groundwater management - application to the Mancha Oriental groundwater system, Spain. Hydrological Earth System Sciences, 19, 1325-1337. doi:10.5194/hess-19-1325-2015 es_ES
dc.description.references Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P. 2008. Climate Change and water. Eds. IPCC Secretariat, Geneva, 210 pp. es_ES
dc.description.references Bergström, S. 1976. Development and application of a conceptual runoff model for Scandinavian catchments. SMHI, Report No. RHO 7, Norrköping, 134 pp. es_ES
dc.description.references Blöschl, G., Montanari, A. 2010. Climate change impacts - throwing the dice? Hydrological Processes. 24(3), 374-381. doi:10.1002/hyp.7574 es_ES
dc.description.references CEDEX-DGA. 2011. Evaluación del impacto del cambio climático en los recursos hídricos en régimen natural. Encomienda de gestión de la Dirección General del Agua (MARM) para el estudio del cambio climático en los recursos hídricos y las masas de agua. es_ES
dc.description.references Chirivella Osma, V., Capilla Romá, J.E., Pérez Martín, M.A. 2015. Modelling regional impacts of climate change on water resources: the Júcar basin (Spain). Hydrological Sciences Journal, 60(1), 30-49, doi:10.1080/02626667.2013.866711 es_ES
dc.description.references CHJ. 2014. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Ciclo de planificación hidrológica 2009-2015. es_ES
dc.description.references CHJ. 2015. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Ciclo de planificación hidrológica 2015-2021. es_ES
dc.description.references Christensen, O.B., Gutowski, W.J., Nikulin, G., Legutke, S. 2014. CORDEX Archive design. Available at http://cordex.dmi.dk. Último acceso: diciembre 2015. es_ES
dc.description.references Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., Hendrickx, F. 2012. Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resources Research, 48(5), W05552, doi:10.1029/2011WR011721 es_ES
dc.description.references Dai, A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52-58. doi:10.1038/nclimate1633 es_ES
dc.description.references Deidda, R., Marrocu, M., Caroletti, G., Pusceddu, G., Langousis, A., Lucarini, V., Puliga, M., Speranza, A. 2013. Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas. Hydrology and Earth System Sciences, 17, 5041-5059, 2013. doi:10.5194/hess-17-5041-2013 es_ES
dc.description.references Diffenbaugh, N.S, Giorgi, F. 2012. Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change, 114(3-4): 813-822. doi:10.1007/s10584-012-0570-x es_ES
dc.description.references Estrela, T., Pérez-Martín, M.A., Vargas, E. 2012. Impacts of climate change on water resources in Spain, Hydrological Sciences Journal, 57(6), 1154-1167. doi:10.1080/02626667.2012.702213 es_ES
dc.description.references Fowler, K.J.A., Peel, M.C., Western, A.W., Zhang, L., Peterson, T.J. 2016. Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models, Water Resources Research, 52(3), 1820-1846. doi:10.1002/2015WR018068. es_ES
dc.description.references Girard, C., Pulido-Velazquez, M., Rinaudo, J-D., Pagé, C., Caballero, Y. 2015. Integrating top-down and bottom-up approaches to design global change adaptation at the river basin scale. Global Environmental Change, 34, 132-146. doi:10.1016/j.gloenvcha.2015.07.002 es_ES
dc.description.references Gudmundsson, L., Bremnes, J.B., Haugen, J.E., Engen-Skaugen, T. 2012. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods. Hydrology and Earth System Sciences, 16, 3383-3390. doi:10.5194/hess-16-3383-2012 es_ES
dc.description.references Haasnoot, M., Kwakkel, J.H., Walker, W.E., ter Maat, J. 2013. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Global Environmental Change 23(2), 485-498. doi:10.1016/j.gloenvcha.2012.12.006 es_ES
dc.description.references Hagemann, S., Chen, C., Clark, D.B., Folwell, S., Gosling, S.N., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voss, F., Wiltshire, A.J. 2013. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth System Dynamics, 4, 129-144. doi:10.5194/esd-4-129-2013 es_ES
dc.description.references Hernández Barrios, L. 2007. Efectos del cambio climático en los sistemas complejos de recursos hídricos. Aplicación a la cuenca del Júcar. Tesis Doctoral, Universidad Politécnica de Valencia, España. es_ES
dc.description.references Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernández, J. 2010. Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain 02). International Journal of Climatology, 32(1), 74-85. doi:10.1002/joc.2256 es_ES
dc.description.references Howard, K.W.F. 2011. Implications of climate change on water security in the Mediterranean region. En Climate change and its effects on water resources. Baba, A., Tayfur, G., Gündüz O., Howard, K.W.F., Friedel, M.J., Chambel, A. 2011. Ed. Springer. NATO Science for Peace and Security Series C: Environmental Security, Volume 3. doi:10.1007/978-94-007-1143-3_2 es_ES
dc.description.references Hughes, D.A. 2015. Simulating temporal variability in catchment response using a monthly rainfall-runoff model. Hydrological Sciences Journal, 60(7-8), 1286-1298. doi:10.1080/02626667.2014.909598 es_ES
dc.description.references IPCC. 2001. Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (eds.). Cambridge University Press, 83 pp. es_ES
dc.description.references IPCC. 2014a. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1132 pp. es_ES
dc.description.references IPCC. 2014b. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). IPCC, Geneva, Switzerland, 151 pp. es_ES
dc.description.references Kwakkel, J.H., Haasnoot, M., Walker, W.E. 2015. Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Climatic Change, 132(3), 373-386. doi:10.1007/s10584-014-1210-4 es_ES
dc.description.references Lespinas, F., Ludwig, W., Heussner, S. 2014. Hydrological and climatic uncertainties associated with modeling the impact of climate change on water resources of small Mediterranean coastal rivers. Journal of Hydrology, 511, 403-422. doi:10.1016/j.jhydrol.2014.01.033 es_ES
dc.description.references Li, H., Sheffield, J., Wood, E. F. 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Journal of Geophysical Research: Atmospheres (1984-2012), 115(D10). doi:10.1029/2009JD012882 es_ES
dc.description.references Mendoza, P.A., Clark, M.P., Mizukami, N., Newman, A.J., Barlage, M., Gutmann, E.D., Rasmussen, R.M., Rajagopalan, B., Brekke, L.D., Arnold, J.R. 2015. Effects of hydrologic model choice and calibration on the portrayal of climate change impacts. Journal of Hydrometeorology, 16, 762-780. doi:10.1175/JHM-D-14-0104.1 es_ES
dc.description.references MIMAM. 2000. Libro Blanco del Agua en España (LBAE). MIMAM, Madrid. 637 pp. es_ES
dc.description.references MAGRAMA. 2016. Real Decreto 1/2016, de 8 de enero, por el que se aprueba la revisión de los Planes Hidrológicos de las demarcaciones hidrográficas del Cantábrico Occidental, Guadalquivir, Ceuta, Melilla, Segura y Júcar, y de la parte española de las demarcaciones hidrográficas del Cantábrico Oriental, Miño-Sil, Duero, Tajo, Guadiana y Ebro. BOE núm. 16, 19 de enero de 2016, Sec. I., 2972-4301 es_ES
dc.description.references MARM. 2008. Orden ARM/2656/2008, de 10 de septiembre, por la que se aprueba la Instrucción de Planificación Hidrológica. BOE núm. 229, 22 de septiembre de 2008, 38472-38582 es_ES
dc.description.references Miró Pérez, J.J., Estrela Navarro, M.J., Olcina Cantos, J. 2015. Statistical downscaling and attribution of air temperature change patterns in the Valencia region (1948-2011). Atmospheric Research, 156, 189-212. doi:10.1016/j.atmosres.2015.01.003 es_ES
dc.description.references Mouelhi, S., Michel, C., Perrin, C., Andréassian, V. 2006. Stepwise development of a two-parameter monthly water balance model. Journal of Hydrology, 318(1-4), 200-214. doi:10.1016/j.jhydrol.2005.06.014 es_ES
dc.description.references Olcina Cantos, J. 2014. Evaluación del primer ciclo de planificación. Riesgos climáticos y cambio climático. Observatorio de las Políticas del Agua (OPPA), Fundación Nueva Cultura del Agua. Octubre de 2014, 17 pp. es_ES
dc.description.references Osuch, M., Romanowicz, R., Booij, M.J. 2015. The influence of parametric uncertainty on the relationships between HBV model parameters and climatic characteristics, Hydrological Sciences Journal, 60(7-8), 1299-1316, doi:10.1080/02626667.2014.967694 es_ES
dc.description.references Pulido-Velazquez, D., García-Aróstegui, J.L., Molina, J.L., Pulido-Velazquez, M., 2014. Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate? Hydrological Processes, 29(6), 828-844. doi:10.1002/hyp.10191 es_ES
dc.description.references Sanz, D., Castaño, S., Cassiraga, E., Sahuquillo, A., Gómez-Alday, J.J., Peña, S., Calera, A. 2011. Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeology Journal, 19(2), 475-487. doi:10.1007/s10040-010-0694-x es_ES
dc.description.references Seibert, J., Vis, M.J.P. 2012. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrology and Earth System Sciences, 16, 3315-3325. doi:10.5194/hess-16-3315-2012 es_ES
dc.description.references Seiller, G., Anctil, F., Perrin, C. 2012. Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions. Hydrology and Earth System Sciences, 16, 1171-1189. doi:10.5194/hess-16-1171-2012 es_ES
dc.description.references Témez Peláez, J.R. 1977. Modelo matemático de transformación precipitación-aportación. ASINEL, 1977. es_ES
dc.description.references Thirel, G., Andréassian, V., Perrin, C. 2015. On the need to test hydrological models under changing conditions. Hydrological Sciences Journal, 60(7-8), 1165-1173. doi:10.1080/02626667.2015.1050027 es_ES
dc.description.references Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K. 2011. The representative concentration pathways: an overview. Climatic Change, 109, 5-31. doi:10.1007/s10584-011-0148-z es_ES
dc.description.references Wilby, R. L., Dessai, S. 2010. Robust adaptation to climate change. Weather, 65(7), 180-185. doi:10.1002/wea.543 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem