- -

Layered gamma-zirconium phosphate as novel semiconductor for dye sensitized solar cells: Improvement of photovoltaic efficiency by intercalation of a ruthenium complex-viologen dyad

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Layered gamma-zirconium phosphate as novel semiconductor for dye sensitized solar cells: Improvement of photovoltaic efficiency by intercalation of a ruthenium complex-viologen dyad

Mostrar el registro completo del ítem

Atienzar Corvillo, PE.; De Victoria-Rodriguez, M.; Juanes, O.; Rodríguez-Ubis, J.; Brunet, E.; García Gómez, H. (2011). Layered gamma-zirconium phosphate as novel semiconductor for dye sensitized solar cells: Improvement of photovoltaic efficiency by intercalation of a ruthenium complex-viologen dyad. Energy and Environmental Science. 4(11):4718-4726. https://doi.org/10.1039/C1EE02158C

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79517

Ficheros en el ítem

Metadatos del ítem

Título: Layered gamma-zirconium phosphate as novel semiconductor for dye sensitized solar cells: Improvement of photovoltaic efficiency by intercalation of a ruthenium complex-viologen dyad
Autor: Atienzar Corvillo, Pedro Enrique De Victoria-Rodriguez, Maria Juanes, Olga Rodríguez-Ubis, J.C. Brunet, E. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The performance of photovoltaic cells using as semiconductor a film of layered γ-zirconium phosphate (γ-ZrP) containing Ru(bpy) 3 and bipyridinium ions (viologens) as electron relays has been studied. The materials ...[+]
Palabras clave: Bipyridinium , Colloidal solutions , Dye sensitized solar cell , Electron relay , Fill-factor , Flat band potential , High loadings , Maximum Efficiency , Mott-Schottky , Photo-voltaic efficiency , Photoresponses , Powder XRD , Reversible reduction , Ru complexes , Ru(bpy) , Semiconducting behavior , Viologens , Zirconium phosphate
Derechos de uso: Reserva de todos los derechos
Fuente:
Energy and Environmental Science. (issn: 1754-5692 )
DOI: 10.1039/C1EE02158C
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c1ee02158c
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2009-11863/
info:eu-repo/grantAgreement/MICYT//MAT2002-03243/ES/MATERIALES HlBRlDOS ORGANO-INORGANICOS PARA APLICACIONES OPTICAS ELECTROQUIMICAS CATALITICAS DE RECONOCIMIENTO MOLECULAR Y MEMORIA QUIRAL/
info:eu-repo/grantAgreement/MEC//MAT2006-00570/ES/MATERIALES HIBRIDOS ORGANO-INORGANICOS PARA EL ALMACENAMIENTO DE HIDROGENO, FOTOGENERACION DE ENERGIA Y OTRAS APLICACIONES/
Agradecimientos:
The UPV-CSIC group is grateful to the Spanish MICINN for grant CTQ2009-11863. The UAM group thanks ERCROS-Farmacia S.A. for indirect funding and regrets that the financial backing from MICINN has been negated after the ...[+]
Tipo: Artículo

References

Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004

O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0

Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153. doi:10.1016/s1389-5567(03)00026-1 [+]
Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004

O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0

Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(2), 145-153. doi:10.1016/s1389-5567(03)00026-1

Teruel, L., Alonso, M., Quintana, M. C., Salvador, Á., Juanes, O., Rodriguez-Ubis, J. C., … García, H. (2009). Photovoltaic activity of layered zirconium phosphates containing covalently grafted ruthenium tris(bipyridyl) and diquat phosphonates as electron donor/acceptor sites. Physical Chemistry Chemical Physics, 11(16), 2922. doi:10.1039/b816698f

Ogawa, M., & Kuroda, K. (1995). Photofunctions of Intercalation Compounds. Chemical Reviews, 95(2), 399-438. doi:10.1021/cr00034a005

Brunet, E., Alonso, M., Quintana, M. C., Atienzar, P., Juanes, O., Rodriguez-Ubis, J. C., & García, H. (2008). Laser Flash-Photolysis Study of Organic−Inorganic Materials Derived from Zirconium Phosphates/Phosphonates of Ru(bpy)3and C60 as Electron Donor−Acceptor Pairs. The Journal of Physical Chemistry C, 112(15), 5699-5702. doi:10.1021/jp800026r

Brunet, E., Alonso, M., Cerro, C., Juanes, O., Rodríguez-Ubis, J.-C., & Kaifer, Á. E. (2007). A Luminescence and Electrochemical Study of Photoinduced Electron Transfer within the Layers of Zirconium Phosphate. Advanced Functional Materials, 17(10), 1603-1610. doi:10.1002/adfm.200700048

Krueger, J. S., Mayer, J. E., & Mallouk, T. E. (1988). Long-lived light-induced charge separation in a zeolite L-based molecular triad. Journal of the American Chemical Society, 110(24), 8232-8234. doi:10.1021/ja00232a044

Kim, Y. I., & Mallouk, T. E. (1992). Dynamic electron-transfer quenching of the tris(2,2’-bipyridyl)ruthenium(II) MLCT excited state by intrazeolitic methylviologen ions. The Journal of Physical Chemistry, 96(7), 2879-2885. doi:10.1021/j100186a019

Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1-3), 3-14. doi:10.1016/j.jphotochem.2004.02.023

Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., … Grätzel, M. (2001). Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 123(8), 1613-1624. doi:10.1021/ja003299u

Zhang, X. (2004). Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films. Solar Energy Materials and Solar Cells, 81(2), 197-203. doi:10.1016/j.solmat.2003.11.005

O’Regan, B. C., Bakker, K., Kroeze, J., Smit, H., Sommeling, P., & Durrant, J. R. (2006). Measuring Charge Transport from Transient Photovoltage Rise Times. A New Tool To Investigate Electron Transport in Nanoparticle Films. The Journal of Physical Chemistry B, 110(34), 17155-17160. doi:10.1021/jp062761f

Papageorgiou, N. (1997). An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media. Journal of The Electrochemical Society, 144(3), 876. doi:10.1149/1.1837502

Green, A. N. M., Palomares, E., Haque, S. A., Kroon, J. M., & Durrant, J. R. (2005). Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2and SnO2Films. The Journal of Physical Chemistry B, 109(25), 12525-12533. doi:10.1021/jp050145y

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem