- -

Structural, vibrational and electrical study of compressed BiTeBr

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural, vibrational and electrical study of compressed BiTeBr

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sans-Tresserras, Juan Ángel es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.contributor.author Pereira, A.L.J. es_ES
dc.contributor.author Vilaplana Cerda, Rosario Isabel es_ES
dc.contributor.author Gomis, O. es_ES
dc.contributor.author SEGURA, A. es_ES
dc.contributor.author Muñoz, A. es_ES
dc.contributor.author Rodríguez-Hernández, Plácida es_ES
dc.contributor.author Catalin Popescu es_ES
dc.contributor.author Drasar, C. es_ES
dc.contributor.author Ruleova, P. es_ES
dc.date.accessioned 2017-04-06T11:07:43Z
dc.date.available 2017-04-06T11:07:43Z
dc.date.issued 2016
dc.identifier.issn 2469-9950
dc.identifier.uri http://hdl.handle.net/10251/79519
dc.description.abstract Compresed BiTeBr has been studied from a joint experimental and theoretical perspective. Room-temperature x-ray diffraction, Raman scattering, and transport measurements at high pressures have been performed in this layered semiconductor and interpreted with the help of ab initio calculations. A reversible first-order phase transition has been observed above 6–7 GPa, but changes in structural, vibrational, and electrical properties have also been noted near 2 GPa. Structural and vibrational changes are likely due to the hardening of interlayer forces rather than to a second-order isostructural phase transition while electrical changes are mainly attributed to changes in the electron mobility. The possibility of a pressure-induced electronic topological transition and of a pressure-induced quantum topological phase transition in BiTeBr and other bismuth tellurohalides, like BiTeI, is also discussed. es_ES
dc.description.sponsorship This work has been performed under financial support from Spanish MINECO under Projects No. MAT2013-46649-C4-2/3-P and MAT2015-71070-REDC. This publication is the outcome of "Programa de Valoracion y Recursos Conjuntos de I+D+i VLC/CAMPUS" and has been financed by the Spanish Ministerio de Educacion, Cultura y Deporte as part of "Programa Campus de Excelencia Internacional" through Projects No. SP20140701 and No. SP20140871. Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. J.A.S. acknowledges the "Juan de la Cierva" fellowship program for financial support. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical review B: Condensed matter and materials physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Structural, vibrational and electrical study of compressed BiTeBr es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.93.024110
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-3-P/ES/ESTUDIO AB INITIO DE OXIDO METALICOS, MATERIALES Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-2-P/ES/OXIDOS METALICOS ABO3 EN CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20140701/ES/Estudio de Aislantes Topológicos a Altas Presiones (EDATAP)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20140871/ES/Celda de yunques de diamante no magnética para medidas de transporte/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Sans-Tresserras, JÁ.; Manjón Herrera, FJ.; Pereira, A.; Vilaplana Cerda, RI.; Gomis, O.; Segura, A.; Muñoz, A.... (2016). Structural, vibrational and electrical study of compressed BiTeBr. Physical review B: Condensed matter and materials physics. 93:024110-1-024110-11. https://doi.org/10.1103/PhysRevB.93.024110 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.93.024110 es_ES
dc.description.upvformatpinicio 024110-1 es_ES
dc.description.upvformatpfin 024110-11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 93 es_ES
dc.relation.senia 303083 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Ishizaka, K., Bahramy, M. S., Murakawa, H., Sakano, M., Shimojima, T., Sonobe, T., … Tokura, Y. (2011). Giant Rashba-type spin splitting in bulk BiTeI. Nature Materials, 10(7), 521-526. doi:10.1038/nmat3051 es_ES
dc.description.references Crepaldi, A., Moreschini, L., Autès, G., Tournier-Colletta, C., Moser, S., Virk, N., … Grioni, M. (2012). Giant Ambipolar Rashba Effect in the Semiconductor BiTeI. Physical Review Letters, 109(9). doi:10.1103/physrevlett.109.096803 es_ES
dc.description.references Landolt, G., Eremeev, S. V., Koroteev, Y. M., Slomski, B., Muff, S., Neupert, T., … Dil, J. H. (2012). Disentanglement of Surface and Bulk Rashba Spin Splittings in Noncentrosymmetric BiTeI. Physical Review Letters, 109(11). doi:10.1103/physrevlett.109.116403 es_ES
dc.description.references Sakano, M., Bahramy, M. S., Katayama, A., Shimojima, T., Murakawa, H., Kaneko, Y., … Ishizaka, K. (2013). Strongly Spin-Orbit Coupled Two-Dimensional Electron Gas Emerging near the Surface of Polar Semiconductors. Physical Review Letters, 110(10). doi:10.1103/physrevlett.110.107204 es_ES
dc.description.references Chen, Y. L., Kanou, M., Liu, Z. K., Zhang, H. J., Sobota, J. A., Leuenberger, D., … Sasagawa, T. (2013). Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nature Physics, 9(11), 704-708. doi:10.1038/nphys2768 es_ES
dc.description.references Xiang, F.-X., Wang, X.-L., Veldhorst, M., Dou, S.-X., & Fuhrer, M. S. (2015). Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl. Physical Review B, 92(3). doi:10.1103/physrevb.92.035123 es_ES
dc.description.references Bahramy, M. S., Arita, R., & Nagaosa, N. (2011). Origin of giant bulk Rashba splitting: Application to BiTeI. Physical Review B, 84(4). doi:10.1103/physrevb.84.041202 es_ES
dc.description.references Eremeev, S. V., Nechaev, I. A., & Chulkov, E. V. (2012). Giant Rashba-type spin splitting at polar surfaces of BiTeI. JETP Letters, 96(7), 437-444. doi:10.1134/s0021364012190071 es_ES
dc.description.references Zhu, Z., Cheng, Y., & Schwingenschlögl, U. (2013). Orbital-dependent Rashba coupling in bulk BiTeCl and BiTeI. New Journal of Physics, 15(2), 023010. doi:10.1088/1367-2630/15/2/023010 es_ES
dc.description.references Nayak, C., Simon, S. H., Stern, A., Freedman, M., & Das Sarma, S. (2008). Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3), 1083-1159. doi:10.1103/revmodphys.80.1083 es_ES
dc.description.references Alicea, J., Oreg, Y., Refael, G., von Oppen, F., & Fisher, M. P. A. (2011). Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Physics, 7(5), 412-417. doi:10.1038/nphys1915 es_ES
dc.description.references Bahramy, M. S., Yang, B.-J., Arita, R., & Nagaosa, N. (2012). Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Communications, 3(1). doi:10.1038/ncomms1679 es_ES
dc.description.references Xi, X., Ma, C., Liu, Z., Chen, Z., Ku, W., Berger, H., … Carr, G. L. (2013). Signatures of a Pressure-Induced Topological Quantum Phase Transition in BiTeI. Physical Review Letters, 111(15). doi:10.1103/physrevlett.111.155701 es_ES
dc.description.references Ponosov, Y. S., Kuznetsova, T. V., Tereshchenko, O. E., Kokh, K. A., & Chulkov, E. V. (2014). Dynamics of the BiTeI lattice at high pressures. JETP Letters, 98(9), 557-561. doi:10.1134/s0021364013220074 es_ES
dc.description.references Tran, M. K., Levallois, J., Lerch, P., Teyssier, J., Kuzmenko, A. B., Autès, G., … Akrap, A. (2014). Infrared- and Raman-Spectroscopy Measurements of a Transition in the Crystal Structure and a Closing of the Energy Gap of BiTeI under Pressure. Physical Review Letters, 112(4). doi:10.1103/physrevlett.112.047402 es_ES
dc.description.references Rusinov, I. P., Nechaev, I. A., Eremeev, S. V., Friedrich, C., Blügel, S., & Chulkov, E. V. (2013). Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides. Physical Review B, 87(20). doi:10.1103/physrevb.87.205103 es_ES
dc.description.references Chen, Y., Xi, X., Yim, W.-L., Peng, F., Wang, Y., Wang, H., … Berger, H. (2013). High-Pressure Phase Transitions and Structures of Topological Insulator BiTeI. The Journal of Physical Chemistry C, 117(48), 25677-25683. doi:10.1021/jp409824g es_ES
dc.description.references D�nges, E. (1951). �ber Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. III. �ber Tellurohalogenide des dreiwertigen Antimons und Wismuts und �ber Antimon-und Wismut(III)-tellurid und Wismut(III)-selenid. Zeitschrift f�r anorganische und allgemeine Chemie, 265(1-3), 56-61. doi:10.1002/zaac.19512650106 es_ES
dc.description.references Shevelkov, A. V., Dikarev, E. V., Shpanchenko, R. V., & Popovkin, B. A. (1995). Crystal Structures of Bismuth Tellurohalides BiTeX (X = Cl, Br, I) from X-Ray Powder Diffraction Data. Journal of Solid State Chemistry, 114(2), 379-384. doi:10.1006/jssc.1995.1058 es_ES
dc.description.references Eremeev, S. V., Rusinov, I. P., Nechaev, I. A., & Chulkov, E. V. (2013). Rashba split surface states in BiTeBr. New Journal of Physics, 15(7), 075015. doi:10.1088/1367-2630/15/7/075015 es_ES
dc.description.references Akrap, A., Teyssier, J., Magrez, A., Bugnon, P., Berger, H., Kuzmenko, A. B., & van der Marel, D. (2014). Optical properties of BiTeBr and BiTeCl. Physical Review B, 90(3). doi:10.1103/physrevb.90.035201 es_ES
dc.description.references Kulbachinskii, V. A., Kytin, V. G., Lavrukhina, Z. V., Kuznetsov, A. N., & Shevelkov, A. V. (2010). Galvanomagnetic and thermoelectric properties of BiTeBr and BiTeI single crystals and their electronic structure. Semiconductors, 44(12), 1548-1553. doi:10.1134/s1063782610120031 es_ES
dc.description.references Kulbachinskii, V. A., Kytin, V. G., Kudryashov, A. A., Kuznetsov, A. N., & Shevelkov, A. V. (2012). On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI. Journal of Solid State Chemistry, 193, 154-160. doi:10.1016/j.jssc.2012.05.037 es_ES
dc.description.references Ma, Y., Dai, Y., Wei, W., Li, X., & Huang, B. (2014). Emergence of electric polarity in BiTeX (X = Br and I) monolayers and the giant Rashba spin splitting. Physical Chemistry Chemical Physics, 16(33), 17603. doi:10.1039/c4cp01975j es_ES
dc.description.references Matyáš, M., Horák, J., & Klubíčková, B. (1980). Some physical properties of n-type BiTeBr single crystals. Physica Status Solidi (a), 61(2), 419-423. doi:10.1002/pssa.2210610212 es_ES
dc.description.references Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900 es_ES
dc.description.references Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408 es_ES
dc.description.references Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242 es_ES
dc.description.references Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970 es_ES
dc.description.references Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112 es_ES
dc.description.references Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159 es_ES
dc.description.references Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030 es_ES
dc.description.references Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640 es_ES
dc.description.references Errandonea, D., Segura, A., Martínez-García, D., & Muñoz-San Jose, V. (2009). Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 79(12). doi:10.1103/physrevb.79.125203 es_ES
dc.description.references Errandonea, D., Martínez-García, D., Segura, A., Ruiz-Fuertes, J., Lacomba-Perales, R., Fages, V., … Mũnoz-San José, V. (2006). High-pressure electrical transport measurements on p-type GaSe and InSe. High Pressure Research, 26(4), 513-516. doi:10.1080/08957950601101787 es_ES
dc.description.references Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 es_ES
dc.description.references Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558 es_ES
dc.description.references Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 es_ES
dc.description.references Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110 es_ES
dc.description.references Pereira, A. L. J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F. J., Errandonea, D., … Beltrán, A. (2012). Structural and vibrational study of cubic Sb2O3under high pressure. Physical Review B, 85(17). doi:10.1103/physrevb.85.174108 es_ES
dc.description.references Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826j es_ES
dc.description.references Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112 es_ES
dc.description.references Gomis, O., Vilaplana, R., Manjón, F. J., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., … Drasar, C. (2011). Lattice dynamics of Sb2Te3at high pressures. Physical Review B, 84(17). doi:10.1103/physrevb.84.174305 es_ES
dc.description.references Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110 es_ES
dc.description.references Moreschini, L., Autès, G., Crepaldi, A., Moser, S., Johannsen, J. C., Kim, K. S., … Grioni, M. (2015). Bulk and surface band structure of the new family of semiconductors BiTeX (X=I, Br, Cl). Journal of Electron Spectroscopy and Related Phenomena, 201, 115-120. doi:10.1016/j.elspec.2014.11.004 es_ES
dc.description.references VanGennep, D., Maiti, S., Graf, D., Tozer, S. W., Martin, C., Berger, H., … Hamlin, J. J. (2014). Pressure tuning the Fermi level through the Dirac point of giant Rashba semiconductor BiTeI. Journal of Physics: Condensed Matter, 26(34), 342202. doi:10.1088/0953-8984/26/34/342202 es_ES
dc.description.references Ideue, T., Checkelsky, J. G., Bahramy, M. S., Murakawa, H., Kaneko, Y., Nagaosa, N., & Tokura, Y. (2014). Pressure variation of Rashba spin splitting toward topological transition in the polar semiconductor BiTeI. Physical Review B, 90(16). doi:10.1103/physrevb.90.161107 es_ES
dc.description.references Wu, L., Yang, J., Wang, S., Wei, P., Yang, J., Zhang, W., & Chen, L. (2014). Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI. Physical Review B, 90(19). doi:10.1103/physrevb.90.195210 es_ES
dc.description.references Errandonea, D., Segura, A., Manjón, F. J., Chevy, A., Machado, E., Tobias, G., … Canadell, E. (2005). Crystal symmetry and pressure effects on the valence band structure ofγ-InSe andε-GaSe: Transport measurements and electronic structure calculations. Physical Review B, 71(12). doi:10.1103/physrevb.71.125206 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem