- -

A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae

Mostrar el registro completo del ítem

Marqués, MC.; Zamarbide-Forés, S.; Pedelini, L.; Llopis Torregrosa, V.; Yenush, L. (2015). A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae. FEMS Yeast Research. 15(4):1-12. https://doi.org/10.1093/femsyr/fov017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79711

Ficheros en el ítem

Metadatos del ítem

Título: A functional Rim101 complex is required for proper accumulation of the Ena1 Na+-ATPase protein in response to salt stress in Saccharomyces cerevisiae
Autor: Marqués, M. Carmen Zamarbide-Forés, Sara Pedelini, Leda Llopis Torregrosa, Vicent Yenush, Lynne
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] The maintenance of ionic homeostasis is essential for cell viability, thus the activity of plasma membrane ion transporters must be tightly controlled. Previous studies in Saccharomyces cerevisiae revealed that the ...[+]
Palabras clave: Ion transport , Rim101 pathway , ESCRT pathway , ENA1 , Protein trafficking , Salt stress
Derechos de uso: Reserva de todos los derechos
Fuente:
FEMS Yeast Research. (issn: 1567-1356 ) (eissn: 1567-1364 )
DOI: 10.1093/femsyr/fov017
Editorial:
Oxford University Press (OUP)
Versión del editor: http://dx.doi.org/10.1093/femsyr/fov017
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BFU2011-30197-C03-03/ES/PAPEL DEL TRAFICO DE PROTEINAS EN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURA Y PLANTAS/
info:eu-repo/grantAgreement/MICINN//EUI2009-04147/ES/MODELADO DE REDES GENICAS Y DE PROTEINAS RELEVANTES EN LA HOMEOSTASIS DE CATIONES EN LEVADURA/
Agradecimientos:
This work was supported by grants BFU2011-30197-C03-03 from the Spanish Ministry of Science and Innovation (Madrid, Spain) and EUI2009-04147 [Systems Biology of Microorganisms (SysMo2) European Research Area-Network ...[+]
Tipo: Artículo

References

Abriel, H., Loffing, J., Rebhun, J. F., Pratt, J. H., Schild, L., Horisberger, J.-D., … Staub, O. (1999). Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. Journal of Clinical Investigation, 103(5), 667-673. doi:10.1172/jci5713

Alepuz, P. M., Cunningham, K. W., & Estruch, F. (1997). Glucose repression affects ion homeostasis in yeast through the regulation of the stress‐activated ENA1 gene. Molecular Microbiology, 26(1), 91-98. doi:10.1046/j.1365-2958.1997.5531917.x

Arino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09 [+]
Abriel, H., Loffing, J., Rebhun, J. F., Pratt, J. H., Schild, L., Horisberger, J.-D., … Staub, O. (1999). Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. Journal of Clinical Investigation, 103(5), 667-673. doi:10.1172/jci5713

Alepuz, P. M., Cunningham, K. W., & Estruch, F. (1997). Glucose repression affects ion homeostasis in yeast through the regulation of the stress‐activated ENA1 gene. Molecular Microbiology, 26(1), 91-98. doi:10.1046/j.1365-2958.1997.5531917.x

Arino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09

Bagnat, M., Chang, A., & Simons, K. (2001). Plasma Membrane Proton ATPase Pma1p Requires Raft Association for Surface Delivery in Yeast. Molecular Biology of the Cell, 12(12), 4129-4138. doi:10.1091/mbc.12.12.4129

Boysen, J. H., & Mitchell, A. P. (2006). Control of Bro1-Domain Protein Rim20 Localization by External pH, ESCRT Machinery, and the Saccharomyces cerevisiae Rim101 Pathway. Molecular Biology of the Cell, 17(3), 1344-1353. doi:10.1091/mbc.e05-10-0949

Calcagno-Pizarelli, A. M., Hervas-Aguilar, A., Galindo, A., Abenza, J. F., Penalva, M. A., & Arst, H. N. (2011). Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling. Journal of Cell Science, 124(23), 4064-4076. doi:10.1242/jcs.088344

Crespo, J. L., Daicho, K., Ushimaru, T., & Hall, M. N. (2001). The GATA Transcription Factors GLN3 and GAT1 Link TOR to Salt Stress inSaccharomyces cerevisiae. Journal of Biological Chemistry, 276(37), 34441-34444. doi:10.1074/jbc.m103601200

Galindo, A., Calcagno-Pizarelli, A. M., Arst, H. N., & Penalva, M. A. (2012). An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. Journal of Cell Science, 125(7), 1784-1795. doi:10.1242/jcs.098897

Garí, E., Piedrafita, L., Aldea, M., & Herrero, E. (1997). A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression inSaccharomyces cerevisiae. Yeast, 13(9), 837-848. doi:10.1002/(sici)1097-0061(199707)13:9<837::aid-yea145>3.0.co;2-t

Gaxiola, R., de Larrinoa, I. F., Villalba, J. M., & Serrano, R. (1992). A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. The EMBO Journal, 11(9), 3157-3164. doi:10.1002/j.1460-2075.1992.tb05392.x

Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., … André, B. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387-391. doi:10.1038/nature00935

Hayashi, M., Fukuzawa, T., Sorimachi, H., & Maeda, T. (2005). Constitutive Activation of the pH-Responsive Rim101 Pathway in Yeast Mutants Defective in Late Steps of the MVB/ESCRT Pathway. Molecular and Cellular Biology, 25(21), 9478-9490. doi:10.1128/mcb.25.21.9478-9490.2005

Herrador, A., Herranz, S., Lara, D., & Vincent, O. (2009). Recruitment of the ESCRT Machinery to a Putative Seven-Transmembrane-Domain Receptor Is Mediated by an Arrestin-Related Protein. Molecular and Cellular Biology, 30(4), 897-907. doi:10.1128/mcb.00132-09

Herranz, S., Rodriguez, J. M., Bussink, H.-J., Sanchez-Ferrero, J. C., Arst, H. N., Penalva, M. A., & Vincent, O. (2005). Arrestin-related proteins mediate pH signaling in fungi. Proceedings of the National Academy of Sciences, 102(34), 12141-12146. doi:10.1073/pnas.0504776102

Horák, J. (2003). The role of ubiquitin in down-regulation and intracellular sorting of membrane proteins: insights from yeast. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1614(2), 139-155. doi:10.1016/s0005-2736(03)00195-0

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98(8), 4569-4574. doi:10.1073/pnas.061034498

Lamb, T. M., & Mitchell, A. P. (2003). The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 23(2), 677-686. doi:10.1128/mcb.23.2.677-686.2003

Lamb, T. M., Xu, W., Diamond, A., & Mitchell, A. P. (2000). Alkaline Response Genes ofSaccharomyces cerevisiaeand Their Relationship to theRIM101Pathway. Journal of Biological Chemistry, 276(3), 1850-1856. doi:10.1074/jbc.m008381200

Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R., & André, B. (2010). The ubiquitin code of yeast permease trafficking. Trends in Cell Biology, 20(4), 196-204. doi:10.1016/j.tcb.2010.01.004

Léon, S., & Haguenauer-Tsapis, R. (2009). Ubiquitin ligase adaptors: Regulators of ubiquitylation and endocytosis of plasma membrane proteins. Experimental Cell Research, 315(9), 1574-1583. doi:10.1016/j.yexcr.2008.11.014

Liu, Y. (2006). Quality control of a mutant plasma membrane ATPase: ubiquitylation prevents cell-surface stability. Journal of Cell Science, 119(2), 360-369. doi:10.1242/jcs.02749

Longtine, M. S., Mckenzie III, A., Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., … Pringle, J. R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast, 14(10), 953-961. doi:10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u

MacGurn, J. A., Hsu, P.-C., & Emr, S. D. (2012). Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. Annual Review of Biochemistry, 81(1), 231-259. doi:10.1146/annurev-biochem-060210-093619

Maeda, T. (2012). The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi. FEBS Journal, 279(8), 1407-1413. doi:10.1111/j.1742-4658.2012.08548.x

Märquez, J., & Serrano, R. (1996). Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Letters, 382(1-2), 89-92. doi:10.1016/0014-5793(96)00157-3

Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328

Mulet, J. M., Llopis-Torregrosa, V., Primo, C., Marqués, M. C., & Yenush, L. (2013). Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Current Genetics, 59(4), 207-230. doi:10.1007/s00294-013-0401-2

Obara, K., & Kihara, A. (2014). Signaling Events of the Rim101 Pathway Occur at the Plasma Membrane in a Ubiquitination-Dependent Manner. Molecular and Cellular Biology, 34(18), 3525-3534. doi:10.1128/mcb.00408-14

Perez-Valle, J., Jenkins, H., Merchan, S., Montiel, V., Ramos, J., Sharma, S., … Yenush, L. (2007). Key Role for Intracellular K+ and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters. Molecular and Cellular Biology, 27(16), 5725-5736. doi:10.1128/mcb.01375-06

Pérez-Valle, J., Rothe, J., Primo, C., Martínez Pastor, M., Ariño, J., Pascual-Ahuir, A., … Yenush, L. (2010). Hal4 and Hal5 Protein Kinases Are Required for General Control of Carbon and Nitrogen Uptake and Metabolism. Eukaryotic Cell, 9(12), 1881-1890. doi:10.1128/ec.00184-10

Platara, M., Ruiz, A., Serrano, R., Palomino, A., Moreno, F., & Ariño, J. (2006). The Transcriptional Response of the Yeast Na+-ATPaseENA1Gene to Alkaline Stress Involves Three Main Signaling Pathways. Journal of Biological Chemistry, 281(48), 36632-36642. doi:10.1074/jbc.m606483200

Proft, M., & Serrano, R. (1999). Repressors and Upstream Repressing Sequences of the Stress-RegulatedENA1Gene inSaccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation. Molecular and Cellular Biology, 19(1), 537-546. doi:10.1128/mcb.19.1.537

Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905

Rotin, D., & Staub, O. (2010). Role of the ubiquitin system in regulating ion transport. Pflügers Archiv - European Journal of Physiology, 461(1), 1-21. doi:10.1007/s00424-010-0893-2

Ruiz, A., & Ariño, J. (2007). Function and Regulation of theSaccharomyces cerevisiae ENASodium ATPase System. Eukaryotic Cell, 6(12), 2175-2183. doi:10.1128/ec.00337-07

Schild, L., Lu, Y., Gautschi, I., Schneeberger, E., Lifton, R. P., & Rossier, B. C. (1996). Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. The EMBO Journal, 15(10), 2381-2387. doi:10.1002/j.1460-2075.1996.tb00594.x

Serrano, R., Ruiz, A., Bernal, D., Chambers, J. R., & Ariño, J. (2002). The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Molecular Microbiology, 46(5), 1319-1333. doi:10.1046/j.1365-2958.2002.03246.x

Staub, O., Dho, S., Henry, P., Correa, J., Ishikawa, T., McGlade, J., & Rotin, D. (1996). WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. The EMBO Journal, 15(10), 2371-2380. doi:10.1002/j.1460-2075.1996.tb00593.x

Subramanian, S., Woolford, C. A., Desai, J. V., Lanni, F., & Mitchell, A. P. (2012). cis - and trans -Acting Localization Determinants of pH Response Regulator Rim13 in Saccharomyces cerevisiae. Eukaryotic Cell, 11(10), 1201-1209. doi:10.1128/ec.00158-12

Tréton, B., Blanchin-Roland, S., Lambert, M., Lépingle, A., & Gaillardin, C. (2000). Ambient pH signalling in ascomycetous yeasts involves homologues of the Aspergillus nidulans genes palF and palH. Molecular and General Genetics MGG, 263(3), 505-513. doi:10.1007/s004380051195

Vidan, S., & Mitchell, A. P. (1997). Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p. Molecular and Cellular Biology, 17(5), 2688-2697. doi:10.1128/mcb.17.5.2688

Wadskog, I., Forsmark, A., Rossi, G., Konopka, C., Öyen, M., Goksör, M., … Adler, L. (2006). The Yeast Tumor Suppressor Homologue Sro7p Is Required for Targeting of the Sodium Pumping ATPase to the Cell Surface. Molecular Biology of the Cell, 17(12), 4988-5003. doi:10.1091/mbc.e05-08-0798

Wang, G., Yang, J., & Huibregtse, J. M. (1999). Functional Domains of the Rsp5 Ubiquitin-Protein Ligase. Molecular and Cellular Biology, 19(1), 342-352. doi:10.1128/mcb.19.1.342

Xu, W., & Mitchell, A. P. (2001). Yeast PalA/AIP1/Alix Homolog Rim20p Associates with a PEST-Like Region and Is Required for Its Proteolytic Cleavage. Journal of Bacteriology, 183(23), 6917-6923. doi:10.1128/jb.183.23.6917-6923.2001

Xu, W., Smith, F. J., Subaran, R., & Mitchell, A. P. (2004). Multivesicular Body-ESCRT Components Function in pH Response Regulation in Saccharomyces cerevisiae and Candida albicans. Molecular Biology of the Cell, 15(12), 5528-5537. doi:10.1091/mbc.e04-08-0666

Yang, B., & Kumar, S. (2009). Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death & Differentiation, 17(1), 68-77. doi:10.1038/cdd.2009.84

Yoshikawa, K., Tanaka, T., Furusawa, C., Nagahisa, K., Hirasawa, T., & Shimizu, H. (2009). Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress inSaccharomyces cerevisiae. FEMS Yeast Research, 9(1), 32-44. doi:10.1111/j.1567-1364.2008.00456.x

Zahrádka, J., & Sychrová, H. (2012). Plasma-membrane hyperpolarization diminishes the cation efflux via Nha1 antiporter and Ena ATPase under potassium-limiting conditions. FEMS Yeast Research, 12(4), 439-446. doi:10.1111/j.1567-1364.2012.00793.x

Zhao, J., Lin, W., Ma, X., Lu, Q., Ma, X., Bian, G., & Jiang, L. (2010). The protein kinase Hal5p is the high-copy suppressor of lithium-sensitive mutations of genes involved in the sporulation and meiosis as well as the ergosterol biosynthesis in Saccharomyces cerevisiae. Genomics, 95(5), 290-298. doi:10.1016/j.ygeno.2010.02.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem