- -

Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population

Show simple item record

Files in this item

dc.contributor.author Ferriol Molina, María es_ES
dc.contributor.author Pichot, C es_ES
dc.contributor.author Lefevre, Francois es_ES
dc.coverage.spatial east=5.223888999999986; north=43.796111; name=Luberon, fòret, França es_ES
dc.date.accessioned 2017-04-18T08:23:55Z
dc.date.available 2017-04-18T08:23:55Z
dc.date.issued 2011-06
dc.identifier.issn 0018-067X
dc.identifier.uri http://hdl.handle.net/10251/79715
dc.description.abstract [EN] We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88-100%) and seedling mortality was low (0-12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load. © 2011 Macmillan Publishers Limited All rights reserved. Guardar / Salir Siguiente > es_ES
dc.description.sponsorship This work has been partially supported by Grant PPI-00-04 from the Polytechnic University of Valencia (Spain). We thank B Fady and E Klein as well as two anonymous reviewers for their helpful comments on a previous version of the paper. We acknowledge B Jouaud, W Brunetto, F Jean and H Picot for seed collection and processing and laboratory assistance, as well as P Brahic and staff from the Experimental Nursery of Aix-Les Milles for nursery cares. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Heredity es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Genetic load es_ES
dc.subject Inbreeding depression es_ES
dc.subject Mating system es_ES
dc.subject Outbreeding depression es_ES
dc.subject Seed germination es_ES
dc.subject Selfing rate es_ES
dc.subject Chloroplast DNA es_ES
dc.subject Autogamy es_ES
dc.subject Coniferous forest es_ES
dc.subject Genetic variation es_ES
dc.subject Germination es_ES
dc.subject Maternal effect es_ES
dc.subject Probability es_ES
dc.subject Reproductive strategy es_ES
dc.subject Seedling es_ES
dc.subject Article es_ES
dc.subject Cedrus es_ES
dc.subject France es_ES
dc.subject Genetic polymorphism es_ES
dc.subject Genetic variability es_ES
dc.subject Genetics es_ES
dc.subject Growth, development and aging es_ES
dc.subject Inbreeding es_ES
dc.subject Physiology es_ES
dc.subject Plant seed es_ES
dc.subject Population es_ES
dc.subject Tree es_ES
dc.subject DNA, Chloroplast es_ES
dc.subject Polymorphism, Genetic es_ES
dc.subject Seeds es_ES
dc.subject Trees es_ES
dc.subject.classification BOTANICA es_ES
dc.title Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/hdy.2010.45
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PPI-00-04/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Ferriol Molina, M.; Pichot, C.; Lefevre, F. (2011). Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population. Heredity. 106(1):146-157. https://doi.org/10.1038/hdy.2010.45 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/hdy.2010.45 es_ES
dc.description.upvformatpinicio 146 es_ES
dc.description.upvformatpfin 157 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 106 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 39539 es_ES
dc.identifier.pmcid PMC3183846 en_EN
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Barret SH, Eckert CG (1990). Variation and evolution of mating systems in seed plants. In: Kawano S (ed). Biological Approaches and Evolutionary Trends in Plants. Academic Press: London. pp 230–254. es_ES
dc.description.references Benton TG, Plaistow SJ, Coulson TN (2006). Complex population dynamics and complex causation: devils, details and demography. Proc R Soc B Biol Sci 273: 1173–1181. es_ES
dc.description.references Bower AD, Aitken SN (2007). Mating system and inbreeding depression in whitebark pine (Pinus albicaulis Engelm.). Tree Genet Genomes 3: 379–388. es_ES
dc.description.references Byers DL, Waller DM (1999). Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30: 479–513. es_ES
dc.description.references Cointat M (1996). Le roman du cèdre. Revue Forestière Française 48: 503–526. es_ES
dc.description.references Collevatti RG, Grattapaglia D, Duvall J (2001). High resolution microsatellite based analysis of the mating system allows the detection of significant biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity 86: 60–67. es_ES
dc.description.references Cottrell JE, White IMS (1995). The use of isozyme genetic markers to estimate the rate of outcrossing in a Sitka pruce (Picea sitchensis (Bong.) Carr.) seed orchard in Scotland. New Forests 10: 111–122. es_ES
dc.description.references Coulson T, Benton TG, Lundberg P, Dall SRX, Kendall BE (2006). Putting evolutionary biology back in the ecological theatre: a demographic framework mapping genes to communities. Evol Ecol Res 8: 1155–1171. es_ES
dc.description.references Durel CE, Bertin P, Kremer A (1996). Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theor Appl Genet 92: 347–356. es_ES
dc.description.references Eriksson E (2006). Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine. Biomass Bioenergy 30: 848–854. es_ES
dc.description.references Fady B, Lefèvre F, Reynaud M, Vendramin GG, Bou Dagher-Karrat M, Anzidei M et al. (2003). Gene flow among different taxonomic units: evidence from nuclear and cytoplasmic markers in Cedrus plantation forests. Theor Appl Genet 107: 1132–1138. es_ES
dc.description.references Farris MA, Mitton JB (1984). Population density, outcrossing rate, and heterozygote superiority in ponderosa pine. Evolution 38: 1151–1154. es_ES
dc.description.references Favre-Duchartre M (1970). Des Ovules Aux Graines. Monographie 8. Masson et Cie.: Paris. es_ES
dc.description.references Franklin EC (1969). Inbreeding Depression in Metrical Traits of Loblolly Pine (Pinus taeda L.) as a Result of Self-pollination. North Carolina State University: Raleigh, NC. Technical report No 40, School of Forest Resources. es_ES
dc.description.references Gregorius HR, Ziehe M, Ross MD (1987). Selection caused by self-fertilization I. Four measures of self-fertilization and their effects on fitness. Theor Popul Biol 31: 91–115. es_ES
dc.description.references Hamrick JL, Godt MJ (1989). Allozyme diversity in plant species. In: Brown AHD, Al Kahler MC, Weir BS (eds). Plant Population Genetics, Breeding, and Genetic Resources. Sinauer: Sunderland, MA. pp 43–63. es_ES
dc.description.references Holsinger KE (1991). Mass-action models of plant mating systems—the evolutionary stability of mixed mating systems. Am Nat 138: 606–622. es_ES
dc.description.references Husband BC, Schemske DW (1996). Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54–70. es_ES
dc.description.references Jones FA, Hamrick JL, Peterson CJ, Squiers ER (2006). Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra. Mol Ecol 15: 851–861. es_ES
dc.description.references Kärkkäinen K, Savolainen O (1993). The degree of early inbreeding depression determines the selfing rate at the seed stage: model and results from Pinus sylvestris (Scots pine). Heredity 71: 160–166. es_ES
dc.description.references Keller LF, Waller DM (2002). Inbreeding effects in wild populations. Trends Ecol Evol 17: 230–241. es_ES
dc.description.references Klein EK, Lavigne C, Gouyon PH (2006). Mixing of propagules from discrete sources at long distance: comparing an exponential tail to an exponential. BMC Ecol 6: 3. es_ES
dc.description.references Knowles P, Furnier GR, Aleksiuk MK, Perry DJ (1987). Significant levels of self-fertilization in natural populations of tamarack. Can J Bot 65: 1087–1091. es_ES
dc.description.references Koelewijn HP, Koski V, Savolainen O (1999). Magnitude and timing of inbreeding depression in Scots pine (Pinus sylvestris L.). Evolution 53: 758–768. es_ES
dc.description.references Kremer A (1994). Genetic diversity and phenotypic variability of forest trees. Genet Sel Evol 26: s105–s123. es_ES
dc.description.references Krouchi F, Derridj A, Lefèvre F (2004). Year and tree effect on reproductive organisation of Cedrus atlantica in a natural forest. For Ecol Manage 197: 181–189. es_ES
dc.description.references Lande R (1988). Genetics and demography in biological conservation. Science 241: 1455–1460. es_ES
dc.description.references Ledig FT (1986). Heterozygosity, heterosis, and fitness in outbreeding plants. In: Soulé ME (ed). Conservation Biology: the Science of Scarcity and Diversity. Sinauer Ass: Sunderland. pp 77–104. es_ES
dc.description.references Lee JK, Nordheim EV, Kang H (1996). Inference for lethal gene estimation with application in plants. Biometrics 52: 451–462. es_ES
dc.description.references Lefèvre F, Fady B, Fallour-Rubio D, Ghosn D, Bariteau M (2004). Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population. Heredity 93: 542–550. es_ES
dc.description.references Marquardt PE, Epperson BK (2004). Spatial and population genetic structure of microsatellites in white pine. Mol Ecol 13: 3305–3315. es_ES
dc.description.references Morgante M, Vendramin GG, Rossi P (1991). Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Can J Bot 69: 2704–2708. es_ES
dc.description.references Mosseler A, Major JE, Simpson JD, Daigle B, Lange K, Park YS et al. (2000). Indicators of population viability in red spruce, Picea rubens. I. Reproductive traits and fecundity. Can J Bot 78: 928–940. es_ES
dc.description.references Naydenov KD, Tremblay FM, Alexandrov A, Fenton NJ (2005). Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis : provenance tests. Biochem Syst Ecol 33: 1226–1245. es_ES
dc.description.references Neale DB, Adams WT (1985). The mating system in natural and shelterwood stands of Douglas-fir. Theor Appl Genet 71: 201–207. es_ES
dc.description.references Notivol E, Garcia-Gil MR, Alia R, Savolainen O (2007). Genetic variation of growth rhythm traits in the limits of a latitudinal cline in Scots pine. Can J For Res 37: 540–551. es_ES
dc.description.references O’Connell LM, Russell J, Ritland K (2004). Fine-scale estimation of outcrossing in western redcedar with microsatellite assay of bulked DNA. Heredity 93: 443–449. es_ES
dc.description.references Parducci L, Szmidt AE, Madaghiele A, Anzidei M, Vendramin GG (2001). Genetic variation at chloroplast microsatellites (CpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor Appl Genet 102: 733–740. es_ES
dc.description.references Parraguirre-Lezama C, Vargas-Hernández JJ, Ramirez-Vallejo P, Ramirez Herrera C (2004). Mating system in four natural populations of Pinus greggii Engelm. Agrociencia 38: 107–119. es_ES
dc.description.references Petit RJ, Hampe A (2006). Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37: 187–214. es_ES
dc.description.references Pichot C, Bastien C, Courbet F, Demesure-Musch B, Dreyfus P, Fady B et al. (2006). Déterminants et conséquences de la qualité génétique des graines et semis lors de la phase initiale de régénération naturelle des peuplements forestiers. In: 6e Colloque National du BRG ; La Rochelle 2006/10/02-04. Les Actes du Bureau des Ressources Génétiques 6: 277–297. es_ES
dc.description.references Remington DL, O’Malley DM (2000a). Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155: 337–348. es_ES
dc.description.references Remington DL, O’Malley DM (2000b). Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution 54: 1580–1589. es_ES
dc.description.references Restoux G, Silva DE, Sagnard F, Torre F, Klein E, Fady B (2008). Life at the margin: the mating system of Mediterranean conifers. Web Ecol 8: 94–102. es_ES
dc.description.references Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002). Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11: 869–877. es_ES
dc.description.references Ritland K, El-Kassaby YA (1985). The nature of inbreeding in a seed orchard of Douglas fir as shown by an efficient multi-locus model. Theor Appl Genet 71: 375–384. es_ES
dc.description.references Ritland K, Travis S (2004). Inferences involving individual coefficients of relatedness and inbreeding in natural populations of Abies. For Ecol Manage 197: 171–180. es_ES
dc.description.references Robledo-Arnuncio JJ, Alia R, Gil L (2004). Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol 13: 2567–2577. es_ES
dc.description.references Rouault G, Turgeon J, Candau JN, Roques A, Aderkas P (2004). Oviposition strategies of conifer seed chalcids in relation to host phenology. Naturwissenschaften 91: 472–480. es_ES
dc.description.references Savolainen O, Kärkkäinen K, Kuittinen H (1992). Estimating numbers of embryonic lethals in conifers. Heredity 69: 308–314. es_ES
dc.description.references Scofield DG, Schultz ST (2006). Mitosis, stature and evolution of plant mating systems: low-Phi and high-Phi plants. Proc R Soc B Biol Sci 273: 275–282. es_ES
dc.description.references Shaw DV, Allard RW (1982). Estimation of outcrossing rates in douglas-fir using isoenzyme markers. Theor Appl Genet 62: 113–120. es_ES
dc.description.references Skrøppa T (1996). Diallel crosses in Picea abies. II. Performance and inbreeding depression of selfed families. For Genet 3: 69–79. es_ES
dc.description.references Sorensen FC (1997). Effects of sib mating and wind pollination on nursery seedling size, growth components, and phenology of Douglas-fir seed-orchard progenies. Can J For Res 27: 557–566. es_ES
dc.description.references Sorensen FC (1999). Relationship between self-fertility, allocation of growth, and inbreeding depression in three coniferous species. Evolution 53: 417–425. es_ES
dc.description.references Sorensen FC (2001). Effect of population outcrossing rate on inbreeding depression in Pinus contorta var. murrayana seedlings. Scand J For Res 16: 391–403. es_ES
dc.description.references Sorensen FC, Adams WT (1993). Self fertility and natural selfing in three Oregon Cascade populations of lodgepole pine. In: Lindgren D (ed). Pinus contorta—From Untamed Forest to Domesticated Crop. Department of Forest Genetics and Plant Physiology, Sweden University of Agricultural Science: Umea, Sweden. Report 11, pp 358–374. es_ES
dc.description.references Sorensen FC, Miles RS (1974). Self-pollination effects on Douglas fir and ponderosa pine seeds and seedlings. Silvae Genet 23: 135–138. es_ES
dc.description.references Sorensen FC, Miles RS (1982). Inbreeding depression in height, height growth, and survival of Douglas-fir, ponderosa pine, and noble fir to 10 years of age. For Sci 28: 283–292. es_ES
dc.description.references Terrab A, Paun O, Talavera S, Tremetsberger K, Arista M, Stuessy TF (2006). Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. Am J Bot 93: 1274–1280. es_ES
dc.description.references Vendramin GG, Lelli L, Rossi P, Morgante M (1996). A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5: 595–598. es_ES
dc.description.references White TL, Adams WT, Neale DB (2007). Forest Genetics. CABI Publisher: Cambridge, MA. pp 149–186. es_ES
dc.description.references Wilcox MD (1983). Inbreeding depression and genetic variances estimated from self- and cross- pollinated families of Pinus radiata. Silvae Genet 32: 89–96. es_ES
dc.description.references Williams CG (2007). Re-thinking the embryo lethal system within the Pinaceae. Can J Bot 85: 667–677. es_ES
dc.description.references Williams CG (2008). Selfed embryo death in Pinus taeda: a phenotypic profile. New Phytol 178: 210–222. es_ES
dc.description.references Williams CG, Auckland LD, Reynolds MM, Leach KA (2003). Overdominant lethals as part of the conifer embryo lethal system. Heredity 91: 584–592. es_ES
dc.description.references Wilson R (1923). Life history of Cedrus atlantica. Bot Gaz 75: 203–208. es_ES
dc.description.references Yazdani R, Muona O, Rudin D, Szmidt AE (1985). Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated understory. For Sci 31: 430–436. es_ES


This item appears in the following Collection(s)

Show simple item record