- -

Extendibility of bilinear forms on banach sequence spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Extendibility of bilinear forms on banach sequence spaces

Show full item record

DANIEL CARANDO; Sevilla Peris, P. (2014). Extendibility of bilinear forms on banach sequence spaces. Israel Journal of Mathematics. 199(2):941-954. doi:10.1007/s11856-014-0003-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79717

Files in this item

Item Metadata

Title: Extendibility of bilinear forms on banach sequence spaces
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
[EN] We study Hahn-Banach extensions of multilinear forms defined on Banach sequence spaces. We characterize c(0) in terms of extension of bilinear forms, and describe the Banach sequence spaces in which every bilinear ...[+]
Subjects: Multilinear forms , Extension , Polynomials , Subspaces , Mappings , L(P)
Copyrigths: Reserva de todos los derechos
Source:
Israel Journal of Mathematics. (issn: 0021-2172 ) (eissn: 1565-8511 )
DOI: 10.1007/s11856-014-0003-9
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s11856-014-0003-9
Thanks:
The second author was supported by MICINN Project MTM2011-22417.
Type: Artículo

References

F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, Vol. 233, Springer, New York, 2006.

R. Arens, The adjoint of a bilinear operation, Proceedings of the American Mathematical Society 2 (1951), 839–848.

R. Arens, Operations induced in function classes, Monatshefte für Mathematik 55 (1951), 1–19. [+]
F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, Vol. 233, Springer, New York, 2006.

R. Arens, The adjoint of a bilinear operation, Proceedings of the American Mathematical Society 2 (1951), 839–848.

R. Arens, Operations induced in function classes, Monatshefte für Mathematik 55 (1951), 1–19.

R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bulletin de la Société Mathématique de France 106 (1978), 3–24.

S. Banach, Sur les fonctionelles linéaires, Studia Mathematica 1 (1929), 211–216.

S. Banach, Théorie des opérations linéaires, (Monogr. Mat. 1) Warszawa: Subwncji Funduszu Narodowej. VII, 254 S., Warsaw, 1932.

D. Carando, Extendible polynomials on Banach spaces, Journal of Mathematical Analysis and Applications 233 (1999), 359–372.

D. Carando, Extendibility of polynomials and analytic functions on l p, Studia Mathematica 145 (2001), 63–73.

D. Carando, V. Dimant and P. Sevilla-Peris, Limit orders and multilinear forms on lp spaces, Publications of the Research Institute for Mathematical Sciences 42 (2006), 507–522.

J. M. F. Castillo, R. García, A. Defant, D. Pérez-García and J. Suárez, Local complementation and the extension of bilinear mappings, Mathematical Proceedings of the Cambridge Philosophical Society 152 (2012), 153–166.

J. M. F. Castillo, R. García and J. A. Jaramillo, Extension of bilinear forms on Banach spaces, Proceedings of the American Mathematical Society 129 (2001), 3647–3656.

P. Cembranos and J. Mendoza, The Banach spaces ℓ ∞(c 0) and c 0(ℓ ∞) are not isomorphic, Journal of Mathematical Analysis and Applications 367 (2010), 461–463.

A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, Vol. 176, North-Holland Publishing Co., Amsterdam, 1993.

A. Defant and C. Michels, Norms of tensor product identities, Note di Matematica 25 (2005/06), 129–166.

J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, Vol. 43, Cambridge University Press, Cambridge, 1995.

D. J. H. Garling, On symmetric sequence spaces, Proceedings of the London Mathematical Society (3) 16 (1966), 85–106.

A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79.

H. Hahn, Über lineare Gleichungssysteme in linearen Räumen, Journal für die Reine und Angewandte Mathematik 157 (1927), 214–229.

R. C. James, Bases and reflexivity of Banach spaces, Annals of Mathematics (2) 52 (1950), 518–527.

H. Jarchow, C. Palazuelos, D. Pérez-García and I. Villanueva, Hahn-Banach extension of multilinear forms and summability, Journal of Mathematical Analysis and Applications 336 (2007), 1161–1177.

W. B. Johnson and L. Tzafriri, On the local structure of subspaces of Banach lattices, Israel Journal of Mathematics 20 (1975), 292–299.

P. Kirwan and R. A. Ryan, Extendibility of homogeneous polynomials on Banach spaces, Proceedings of the American Mathematical Society 126 (1998), 1023–1029.

J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in Lp-spaces and their applications, Studia Mathematica 29 (1968), 275–326.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Vol. 97, Springer-Verlag, Berlin, 1979. Function spaces.

G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, Vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.

M. Fernndez-Unzueta and A. Prieto, Extension of polynomials defined on subspaces, Mathematical Proceedings of the Cambridge Philosophical Society 148 (2010), 505–518.

W. L. C. Sargent, Some sequence spaces related to the lp spaces, Journal of the London Mathematical Society 35 (1960), 161–171.

N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 38, Longman Scientific & Technical, Harlow, 1989.

[-]

This item appears in the following Collection(s)

Show full item record