- -

A note on unibasic spaces and transitive quasi-proximities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A note on unibasic spaces and transitive quasi-proximities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Máynez, Adalberto es_ES
dc.contributor.author Pimienta Acosta, Adolfo es_ES
dc.date.accessioned 2017-04-19T11:31:12Z
dc.date.available 2017-04-19T11:31:12Z
dc.date.issued 2017-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/79811
dc.description.abstract [EN] In this paper we prove there is a bijection between the set of all annular bases of a topological spaces $(X,\tau)$ and the set of all transitive quasi-proximities on $X$ inducing $\tau$.We establish some properties of those topological spaces $(X,\tau)$ which imply that $\tau$ is the only annular basis es_ES
dc.description.sponsorship The second author was supported in part by Universidad de la Costa(CUCwww.cuc.edu.co) under grant of Department of Exact and Natural Sciences, address street 58 # 55-66, Barranquilla, Colombia.
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Annular basis es_ES
dc.subject Entourage es_ES
dc.subject Semi-block es_ES
dc.subject Quasi-proximity es_ES
dc.subject Transitive quasi-proximity-uniformity es_ES
dc.subject Unibasic spaces es_ES
dc.title A note on unibasic spaces and transitive quasi-proximities es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-19T11:19:27Z
dc.identifier.doi 10.4995/agt.2017.4092
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation García-Máynez, A.; Pimienta Acosta, A. (2017). A note on unibasic spaces and transitive quasi-proximities. Applied General Topology. 18(1):23-30. https://doi.org/10.4995/agt.2017.4092 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2017.4092 es_ES
dc.description.upvformatpinicio 23 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder Universidad de la Costa
dc.description.references P. Fletcher and W. Lindgren, Quasi-uniformity spaces, vol 77, Marcel Dekker, Inc., New York, First edition, 1982. https://doi.org/10.1080/16073606.1994.9631779 https://doi.org/10.1090/S0002-9939-02-06477-8 es_ES
dc.description.references Ferrer, J. (1994). ON TOPOLOGICAL SPACES WITH A UNIQUE QUASI-PROXIMITY. Quaestiones Mathematicae, 17(4), 479-486. doi:10.1080/16073606.1994.9631779 es_ES
dc.description.references Künzi, H.-P. A. (2002). Proceedings of the American Mathematical Society, 130(12), 3725-3731. doi:10.1090/s0002-9939-02-06477-8 es_ES
dc.description.references K�nzi, H.-P. A. (1984). Topological spaces with a unique compatible quasi-proximity. Archiv der Mathematik, 43(6), 559-561. doi:10.1007/bf01190960 es_ES
dc.description.references Künzi, H.-P. A., & Pérez-Peñalver, M. J. (2000). Acta Mathematica Hungarica, 88(1/2), 15-23. doi:10.1023/a:1006788124139 es_ES
dc.description.references Künzi, H.-P. A., & Watson, S. (1996). A nontrivial T1-space admitting a unique quasi-proximity. Glasgow Mathematical Journal, 38(2), 207-213. doi:10.1017/s0017089500031451 es_ES
dc.description.references Pervin, W. J. (1962). Quasi-uniformization of topological spaces. Mathematische Annalen, 147(4), 316-317. doi:10.1007/bf01440953 es_ES
dc.description.references Pervin, W. J. (1963). Quasi-proximities for topological spaces. Mathematische Annalen, 150(4), 325-326. doi:10.1007/bf01470761 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem