Mostrar el registro sencillo del ítem
dc.contributor.author | García-Máynez, Adalberto | es_ES |
dc.contributor.author | Pimienta Acosta, Adolfo | es_ES |
dc.date.accessioned | 2017-04-19T11:31:12Z | |
dc.date.available | 2017-04-19T11:31:12Z | |
dc.date.issued | 2017-04-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/79811 | |
dc.description.abstract | [EN] In this paper we prove there is a bijection between the set of all annular bases of a topological spaces $(X,\tau)$ and the set of all transitive quasi-proximities on $X$ inducing $\tau$.We establish some properties of those topological spaces $(X,\tau)$ which imply that $\tau$ is the only annular basis | es_ES |
dc.description.sponsorship | The second author was supported in part by Universidad de la Costa(CUCwww.cuc.edu.co) under grant of Department of Exact and Natural Sciences, address street 58 # 55-66, Barranquilla, Colombia. | |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Annular basis | es_ES |
dc.subject | Entourage | es_ES |
dc.subject | Semi-block | es_ES |
dc.subject | Quasi-proximity | es_ES |
dc.subject | Transitive quasi-proximity-uniformity | es_ES |
dc.subject | Unibasic spaces | es_ES |
dc.title | A note on unibasic spaces and transitive quasi-proximities | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-04-19T11:19:27Z | |
dc.identifier.doi | 10.4995/agt.2017.4092 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | García-Máynez, A.; Pimienta Acosta, A. (2017). A note on unibasic spaces and transitive quasi-proximities. Applied General Topology. 18(1):23-30. https://doi.org/10.4995/agt.2017.4092 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2017.4092 | es_ES |
dc.description.upvformatpinicio | 23 | es_ES |
dc.description.upvformatpfin | 30 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | Universidad de la Costa | |
dc.description.references | P. Fletcher and W. Lindgren, Quasi-uniformity spaces, vol 77, Marcel Dekker, Inc., New York, First edition, 1982. https://doi.org/10.1080/16073606.1994.9631779 https://doi.org/10.1090/S0002-9939-02-06477-8 | es_ES |
dc.description.references | Ferrer, J. (1994). ON TOPOLOGICAL SPACES WITH A UNIQUE QUASI-PROXIMITY. Quaestiones Mathematicae, 17(4), 479-486. doi:10.1080/16073606.1994.9631779 | es_ES |
dc.description.references | Künzi, H.-P. A. (2002). Proceedings of the American Mathematical Society, 130(12), 3725-3731. doi:10.1090/s0002-9939-02-06477-8 | es_ES |
dc.description.references | K�nzi, H.-P. A. (1984). Topological spaces with a unique compatible quasi-proximity. Archiv der Mathematik, 43(6), 559-561. doi:10.1007/bf01190960 | es_ES |
dc.description.references | Künzi, H.-P. A., & Pérez-Peñalver, M. J. (2000). Acta Mathematica Hungarica, 88(1/2), 15-23. doi:10.1023/a:1006788124139 | es_ES |
dc.description.references | Künzi, H.-P. A., & Watson, S. (1996). A nontrivial T1-space admitting a unique quasi-proximity. Glasgow Mathematical Journal, 38(2), 207-213. doi:10.1017/s0017089500031451 | es_ES |
dc.description.references | Pervin, W. J. (1962). Quasi-uniformization of topological spaces. Mathematische Annalen, 147(4), 316-317. doi:10.1007/bf01440953 | es_ES |
dc.description.references | Pervin, W. J. (1963). Quasi-proximities for topological spaces. Mathematische Annalen, 150(4), 325-326. doi:10.1007/bf01470761 | es_ES |